完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。使用stm32控制机器时,经常要用到舵机,如使某个部位转到特定的角度,或者在行进过程中的方向控制,这篇文章将以stm32F103C8T6为例,从分析舵机的原理出发,到介绍使用stm的TIM功能输出PWM波,掌握理论后进行实战,先控制一个舵机上手,然后控制多个舵机。
一、舵机的原理 一个舵机由变速齿轮箱,电位器,电路板与直流电机组成。电机的高速、短周期运动由齿轮箱转换为慢速、长周期的运动,最终到最外端的齿轮,齿轮的转动带动电位器转动,电位器的电位与信号线进行比较,从而实现转动到特定角度的功能。 伺服电机由信号线输入的PWM信号控制。信号的频率应为50Hz,周期为20ms,PWM的占空比决定了舵机旋转到的角度。 二、如何控制一个舵机 舵机的控制由一个脉冲宽度调制信号(PWM波)来实现,该信号在这个实验里使用stm32来发出。 通常来说,1ms的脉宽对应0度位置,1.5ms对应90度,2ms对应180度。这一数据会由于舵机型号不同而略有差异。 三、使用stm32TIM功能输出PWM波来控制舵机 根据STM32F10xxx参考手册, 通用TIM 定时器与高级TIM功能包括: ● 16位向上、向下、向上/向下自动装载计数器 ● 16位可编程(可以实时修改)预分频器,计数器时钟频率的分频系数为1~65536之间的任意 数值 ● 4个独立通道: ─ 输入捕获 ─ 输出比较 ─ PWM生成(边缘或中间对齐模式) ─ 单脉冲模式输出 ● 使用外部信号控制定时器和定时器互连的同步电路 ● 如下事件发生时产生中断/DMA: ─ 更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ─ 触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ─ 输入捕获 ─ 输出比较 ● 支持针对定位的增量(正交)编码器和霍尔传感器电路 ● 触发输入作为外部时钟或者按周期的电流管理 在这里使用4个独立通道:PWM生成,要注意的是,基本定时器并不具备该功能。 不同型号的芯片包含的TIM模块可能不同,使用时建议先查询数据手册。 配置时基单元 要使用该功能,首先要配置时基单元,时基单元可以理解为定时器的心脏,它主要包含: ● 计数器寄存器(TIMx_CNT) ● 预分频器寄存器 (TIMx_PSC) ● 自动装载寄存器 (TIMx_ARR) 之间的关系是: 驱动定时器的时钟:CK_CNT=CK_INT/(PSC+1),CNT开始计数,由ARR决定产生更新事件。 预分频器 预分频器可以将计数器的时钟频率按1到65536之间的任意值进行分频,选中的时钟由分频器分频后进行计数,在这里使用内部时钟INT,经过分频后CK_CNT=CK_INT/(PSC+1) 那么如何得知内部时钟的频率呢?参考时钟树,可以发现: 在STM32F10xxx中,TIM1和TIM8挂载在APB2总线上,其他都挂载到APB1总线上 定时器时钟频率分配由硬件按以下2种情况自动设置: 1. 如果相应的APB预分频系数是1,定时器的时钟频率与所在APB总线频率保持一致2. 否则,定时器的时钟频率被设为与其相连的APB总线频率的2倍。 在标准库中,APB1与APB2预分频系数是2,所以定时器时钟TIMxCLK=36MHz*2=72MHz 计数器模式
这里还有一个自动加载影子寄存器,简单来说就是当写入新数据至影子计数器时,若ARPE=0,则ARR寄存器值立即装入,若ARPE=1,要等到下一个更新事件才会写入。
** 在PWM模式(模式1或模式2)下,TIMx_CNT和TIMx_CCRx始终在进行比较。 PWM模式1与PWM模式2的描述如下:(见STM32F10xxx参考手册) PWM模式1——在向上计数时,一旦TIMx_CNT PWM模式2- 在向上计数时,一旦TIMx_CNT 综上所述,产生PWM波的步骤如下: 1.配置预分频寄存器PSC的值为(7200-1),内部时钟为72MHz,则计数一次的时间为(7200/72000000)s=0.1ms; 2.配置自动装载寄存器ARR的值为(200-1),那么产生一次计数中断的周期为20ms,与驱动舵机需要的周期相符 3.使用输出比较功能的PWM模式,更改CCR寄存器的值即可改变占空比,如前面所说的,脉宽为1ms对应0°,2ms对应180° 四、实战——先从控制一个舵机入手 在这里,将以十分常见的SG90舵机为例(下图),使用stm32C8T6驱动 长这个样子 首先,我们新建bsp_servo.h与bsp_servo.c文件 本实验使用TIM3的输出通道1,在bsp_servo.h文件中定义宏 /*先使用TIM1的通道1*/ #define GENERAL_TIM TIM3 #define GENERAL_TIM_APBxClock_FUN RCC_APB1PeriphClockCmd #define GENERAL_TIM_CLK RCC_APB1Periph_TIM3 //配置预分频寄存器PSC的值为(7200-1),内部时钟为72MHz,则计数一次的时间为(7200/72000000)s=0.1ms; #define GENERAL_TIM_Prescaler (72000-1) //配置自动装载寄存器ARR的值为(200-1),那么产生一次计数中断的周期为20ms,与驱动舵机需要的周期相符 #define GENERAL_TIM_Period (20-1) // TIM3 输出比较通道1 #define GENERAL_TIM_CH1_GPIO_CLK RCC_APB2Periph_GPIOA #define GENERAL_TIM_CH1_PORT GPIOA #define GENERAL_TIM_CH1_PIN GPIO_Pin_6 之后来到bsp_servo.c文件,配置GPIO端口为复用,输出端口为PA6,具体使用哪个端口可以参考对应型号的data sheet。 static void GENERAL_TIM_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; // 输出比较通道1 GPIO 初始化 RCC_APB2PeriphClockCmd(GENERAL_TIM_CH1_GPIO_CLK, ENABLE); GPIO_InitStructure.GPIO_Pin = GENERAL_TIM_CH1_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GENERAL_TIM_CH1_PORT, &GPIO_InitStructure); } 使用TIM功能的PWM模式 static void GENERAL_TIM_Mode_Config(void) { // 开启定时器时钟,即内部时钟CK_INT=72M GENERAL_TIM_APBxClock_FUN(GENERAL_TIM_CLK,ENABLE); /*--------------------时基结构体初始化-------------------------*/ TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; // 自动重装载寄存器的值,累计TIM_Period+1个频率后产生一个更新或者中断 TIM_TimeBaseStructure.TIM_Period=GENERAL_TIM_Period; // 驱动CNT计数器的时钟 = Fck_int/(psc+1) TIM_TimeBaseStructure.TIM_Prescaler= GENERAL_TIM_Prescaler; // 时钟分频因子 ,配置死区时间时需要用到 TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; // 计数器计数模式,设置为向上计数 TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; // 重复计数器的值,没用到不用管 TIM_TimeBaseStructure.TIM_RepetitionCounter=0; // 初始化定时器 TIM_TimeBaseInit(GENERAL_TIM, &TIM_TimeBaseStructure); /*--------------------输出比较结构体初始化-------------------*/ TIM_OCInitTypeDef TIM_OCInitStructure; // 配置为PWM模式1 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; // 输出使能 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; // 输出通道电平极性配置 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; // 输出比较通道 1 TIM_OCInitStructure.TIM_Pulse = 0; TIM_OC1Init(GENERAL_TIM, &TIM_OCInitStructure); TIM_OC1PreloadConfig(GENERAL_TIM, TIM_OCPreload_Enable); // 使能计数器 TIM_Cmd(GENERAL_TIM, ENABLE); } 定义一个初始化函数,同时初始化时基与输出比较 void GENERAL_TIM_Init(void) { GENERAL_TIM_GPIO_Config(); GENERAL_TIM_Mode_Config(); } 这样初始化配置就完成了,接下来来到main.c使用TIM_SetComparex(TIMx, Compare);来配置占空比。 首先定义一个延时函数,使舵机有时间转动特定的角度 void Delay(__IO uint32_t nCount) //简单的延时函数 { for(; nCount != 0; nCount--); } 为了方便使用定义一个宏 #define SOFT_DELAY Delay(0x0FFFFF); 前面将TIM3配置为PWM模式1,即为向上计数,CNT int main(void) { GENERAL_TIM_Init(); while(1) { for(int i = 5;i < 26;i++)//结果测试,设置CCR的值为5-6对应舵机旋转到0°-180° { TIM_SetCompare1(GENERAL_TIM , i); SOFT_DELAY; } } } 此时将舵机上电,信号线连接到PA6,可以看到舵机旋转 五、控制多个舵机 控制一个舵机成功后,进一步控制多个舵机,先以TIM3增加输出通道为例,这里增加Channel2,输出端口配置为PA7 // TIM3 输出比较通道2 #define GENERAL_TIM_CH2_GPIO_CLK RCC_APB2Periph_GPIOA #define GENERAL_TIM_CH2_PORT GPIOA #define GENERAL_TIM_CH2_PIN GPIO_Pin_7 static void GENERAL_TIM_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; // 输出比较通道1 GPIO 初始化 RCC_APB2PeriphClockCmd(GENERAL_TIM_CH1_GPIO_CLK, ENABLE); GPIO_InitStructure.GPIO_Pin = GENERAL_TIM_CH1_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GENERAL_TIM_CH1_PORT, &GPIO_InitStructure); // 输出比较通道1 GPIO 初始化 RCC_APB2PeriphClockCmd(GENERAL_TIM_CH2_GPIO_CLK, ENABLE); GPIO_InitStructure.GPIO_Pin = GENERAL_TIM_CH2_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GENERAL_TIM_CH2_PORT, &GPIO_InitStructure); } static void GENERAL_TIM_Mode_Config(void) { // 开启定时器时钟,即内部时钟CK_INT=72M GENERAL_TIM_APBxClock_FUN(GENERAL_TIM_CLK,ENABLE); /*--------------------时基结构体初始化-------------------------*/ TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; // 自动重装载寄存器的值,累计TIM_Period+1个频率后产生一个更新或者中断 TIM_TimeBaseStructure.TIM_Period=GENERAL_TIM_Period; // 驱动CNT计数器的时钟 = Fck_int/(psc+1) TIM_TimeBaseStructure.TIM_Prescaler= GENERAL_TIM_Prescaler; // 时钟分频因子 ,配置死区时间时需要用到 TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; // 计数器计数模式,设置为向上计数 TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; // 重复计数器的值,没用到不用管 TIM_TimeBaseStructure.TIM_RepetitionCounter=0; // 初始化定时器 TIM_TimeBaseInit(GENERAL_TIM, &TIM_TimeBaseStructure); /*--------------------输出比较结构体初始化-------------------*/ TIM_OCInitTypeDef TIM_OCInitStructure; // 配置为PWM模式1 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; // 输出使能 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; // 输出通道电平极性配置 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; // 输出比较通道 1 TIM_OCInitStructure.TIM_Pulse = 0; TIM_OC1Init(GENERAL_TIM, &TIM_OCInitStructure); TIM_OC1PreloadConfig(GENERAL_TIM, TIM_OCPreload_Enable); // 输出比较通道 2 TIM_OCInitStructure.TIM_Pulse = 0; TIM_OC2Init(GENERAL_TIM, &TIM_OCInitStructure); TIM_OC2PreloadConfig(GENERAL_TIM, TIM_OCPreload_Enable); // 使能计数器 TIM_Cmd(GENERAL_TIM, ENABLE); } 然后来到main.c,这里是使用TIM_SetCompare2(GENERAL_TIM ,Compare);对于函数 TIM_SetComparex(TIMy,Compare);设置的是TIMy模块CHx的脉宽。 int main(void) { GENERAL_TIM_Init(); while(1) { for(int i = 5;i<26;i++) { TIM_SetCompare1(GENERAL_TIM ,i); SOFT_DELAY; } for(int i = 5;i<26;i++) { TIM_SetCompare2(GENERAL_TIM ,i); SOFT_DELAY; } } } 可以看到两个舵机按照程序转动起来。 之后要增加控制舵机的数据,可以先增加TIMx的通道数,一个通用或者高级定时器有四个输出通道,还可以增加新的TIM,达到控制多个舵机的目的。为了避免篇幅过于冗长,这里不挂出具体代码。 最后再来一个挂载四个的。 |
|
|
|
只有小组成员才能发言,加入小组>>
调试STM32H750的FMC总线读写PSRAM遇到的问题求解?
1683 浏览 1 评论
X-NUCLEO-IHM08M1板文档中输出电流为15Arms,15Arms是怎么得出来的呢?
1582 浏览 1 评论
1013 浏览 2 评论
STM32F030F4 HSI时钟温度测试过不去是怎么回事?
703 浏览 2 评论
ST25R3916能否对ISO15693的标签芯片进行分区域写密码?
1627 浏览 2 评论
1892浏览 9评论
STM32仿真器是选择ST-LINK还是选择J-LINK?各有什么优势啊?
675浏览 4评论
STM32F0_TIM2输出pwm2后OLED变暗或者系统重启是怎么回事?
538浏览 3评论
558浏览 3评论
stm32cubemx生成mdk-arm v4项目文件无法打开是什么原因导致的?
526浏览 3评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-4 02:40 , Processed in 0.774680 second(s), Total 49, Slave 42 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号