【RA-Eco-RA4E2-64PIN-V1.0 开发板】串口读取 GPS
本文介绍了 RA-Eco-RA4E2-64PIN-V1.0 通过串口通信接口 UART 读取 GPS 模块,并串口发送原始数据和解析数据的项目设计。
项目介绍
- 硬件连接:GPS 模块通过串口与开发板的 UART0 对应引脚连接;
- 工程创建:使用 e2 studio 软件实现空白工程创建;
- 工程配置:包括GPIO引脚、时钟树、堆栈、串口重定向等配置;
- 工程代码:包括主程序代码和 GPS 函数定义头文件和源文件;
- 效果演示:串口打印读取到的 GPS 原始数据和解析数据。
硬件连接
GPS 模块与开发板连接方式如下
| GPS module |
RA4E2 |
Note |
|---|
| RXD |
TXD0 (P101) |
Receive data |
| TXD |
RXD0 (P100) |
Transmit data |
| VCC |
3V3 |
Power |
| GND |
GND |
Ground |
实物图

工程创建
- 打开 e^2^ studio 软件;
- 依次点击
文件 - 新建 - 瑞萨 C/C++ 项目 - Renesas RA ;
- 依次进行工程命名,路径设置,FSP版本,目标开发板选择,Device 选择
R7FA4E2B93CFM ,工具链选择 GNU ARM Embedded ,调试器选择 J-Link ,完成工程创建 ;
工程配置
包括 Pins、Clock、Stacks 等配置。
GPIO 引脚
- 进入 FSP 配置界面,打开 Pins 标签页,根据原理图或开发板丝印,将 P109 和 P110 引脚分别配置为 TXD9 和 RXD9 串口模式;
- 同理,将 P101 和 P100 引脚分别配置为 TXD0 和 RXD0 串口模式;

UART 堆栈
- 新建串口通信堆栈
New Stack - Connectivity - UART (r_sci_uart) ;
- 串口属性配置,General 标签下的 Channel 改为 9,名称改为
g_uart9,中断回调函数命名为 user_uart9_callback;
- 再次新建串口通信堆栈
New Stack - Connectivity - UART (r_sci_uart) ;
- 串口属性配置,General 标签下的 Channel 改为 0,名称改为
g_uart0,中断回调函数命名为 user_uart0_callback,注意波特率需要修改为 9600 并与 GPS 模块匹配;

- 进入 BSP 标签页,配置 RA Common 属性,RA Common 标签下的 Heap size 改为
0x2000;
- 点击
Generate Project Content 按钮,生成工程代码。
串口重定向
- 右键项目进入属性界面,选择 C/C++ 构建 - 设置 - GNU Arm Cross C Linker - Miscellaneous,勾选 printf 、scanf 以及syscalls 选项。

流程图

工程代码
在 .../src 目录下新建源文件 gps_parser.c 和头文件 gps_parser.h 用于配置 GPS 相关解析函数。
hal_entry.c
#include "hal_data.h"
#include "gps_parser.h"
#include "stdio.h"
#include <string.h>
FSP_CPP_HEADER
void R_BSP_WarmStart(bsp_warm_start_event_t event);
FSP_CPP_FOOTER
fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart9_callback (uart_callback_args_t * p_args)
{
if(p_args->event == UART_EVENT_TX_COMPLETE)
{
uart_send_complete_flag = true;
}
}
#ifdef __GNUC__
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#endif
PUTCHAR_PROTOTYPE
{
err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1);
if(FSP_SUCCESS != err) __BKPT();
while(uart_send_complete_flag == false){}
uart_send_complete_flag = false;
return ch;
}
int _write(int fd,char *pBuffer,int size)
{
for(int i=0;i<size;i++)
{
__io_putchar(*pBuffer++);
}
return size;
}
volatile uint8_t gps_rx_buffer[256];
volatile uint16_t gps_rx_index = 0;
volatile bool gps_line_ready = false;
gps_data_t current_gps_data;
void user_uart0_callback(uart_callback_args_t * p_args)
{
if (p_args->event == UART_EVENT_RX_CHAR)
{
uint8_t rx_char = (uint8_t)p_args->data;
if (gps_rx_index < (sizeof(gps_rx_buffer) - 1))
{
gps_rx_buffer[gps_rx_index++] = rx_char;
if (rx_char == '\n')
{
gps_rx_buffer[gps_rx_index] = '\0';
gps_line_ready = true;
gps_rx_index = 0;
}
}
else
{
gps_rx_index = 0;
}
}
}
void init_system(void)
{
fsp_err_t err;
printf("=== RA4E2 GPS Receiver ===\r\n");
printf("Initializing system...\r\n");
gps_parser_init();
err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);
if (FSP_SUCCESS != err)
{
while(1);
}
printf("SCI9 (printf) initialized at 115200 baud\r\n");
err = R_SCI_UART_Open(&g_uart0_ctrl, &g_uart0_cfg);
if (FSP_SUCCESS != err)
{
printf("Error: Failed to initialize SCI0 for GPS\r\n");
while(1);
}
printf("SCI0 (GPS) initialized at 9600 baud\r\n");
printf("Waiting for GPS data...\r\n\r\n");
}
void process_gps_data(void)
{
if (gps_line_ready)
{
__disable_irq();
char nmea_line[256];
strncpy(nmea_line, (char *)gps_rx_buffer, sizeof(nmea_line));
nmea_line[sizeof(nmea_line) - 1] = '\0';
gps_line_ready = false;
__enable_irq();
printf("RAW: %s", nmea_line);
if (strstr(nmea_line, "$GPGGA"))
{
if (parse_gpgga(nmea_line, ¤t_gps_data))
{
print_gps_data(¤t_gps_data);
}
else
{
printf("Failed to parse GPGGA data\r\n");
}
}
else if (strstr(nmea_line, "$GPRMC"))
{
gps_time_t rmc_time;
if (parse_gprmc(nmea_line, ¤t_gps_data, &rmc_time))
{
if (current_gps_data.time.hour == 0 &&
current_gps_data.time.minute == 0 &&
current_gps_data.time.second == 0)
{
current_gps_data.time = rmc_time;
}
}
}
printf("\r\n");
}
}
void print_parsed_gps_data(void)
{
static uint32_t last_print_time = 0;
static uint32_t current_time = 0;
current_time++;
if (current_time - last_print_time >= 200)
{
last_print_time = current_time;
printf("\r\n=== PARSED GPS DATA ===\r\n");
if (current_gps_data.is_valid)
{
print_gps_time(¤t_gps_data.time);
printf("\r\n");
printf("Latitude: %.6f°\r\n", current_gps_data.latitude);
printf("Longitude: %.6f°\r\n", current_gps_data.longitude);
printf("Altitude: %.1f m\r\n", current_gps_data.altitude);
printf("Satellites: %d\r\n", current_gps_data.satellites);
printf("Fix Quality: %d\r\n", current_gps_data.fix_quality);
switch (current_gps_data.fix_quality)
{
case 0: printf("Status: Invalid fix\r\n"); break;
case 1: printf("Status: GPS fix\r\n"); break;
case 2: printf("Status: DGPS fix\r\n"); break;
default: printf("Status: Other fix (%d)\r\n", current_gps_data.fix_quality); break;
}
}
else
{
if (current_gps_data.time.hour != 0 ||
current_gps_data.time.minute != 0 ||
current_gps_data.time.second != 0)
{
print_gps_time(¤t_gps_data.time);
printf("\r\n");
}
printf("No valid GPS fix\r\n");
printf("Satellites in view: %d\r\n", current_gps_data.satellites);
printf("Waiting for satellite lock...\r\n");
}
printf("==========================\r\n");
}
}
void hal_entry(void)
{
err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);
assert(FSP_SUCCESS == err);
printf("RA4M2 GPS Reader Started\r\n");
init_system();
uint32_t status_counter = 0;
while(1){
process_gps_data();
print_parsed_gps_data();
status_counter++;
if (status_counter >= 1000)
{
printf("[Status] System running...\r\n");
if (current_gps_data.is_valid)
{
printf("[Status] GPS fix acquired\r\n");
}
else
{
printf("[Status] Waiting for GPS fix\r\n");
}
status_counter = 0;
}
R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);
}
#if BSP_TZ_SECURE_BUILD
R_BSP_NonSecureEnter();
#endif
}
gps_parser.c
#include "gps_parser.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
void gps_parser_init(void)
{
}
bool parse_gpgga(const char *nmea_sentence, gps_data_t *gps_data)
{
if (!nmea_sentence || !gps_data || strncmp(nmea_sentence, "$GPGGA", 6) != 0)
{
return false;
}
memset(gps_data, 0, sizeof(gps_data_t));
gps_data->is_valid = false;
char sentence_copy[256];
strncpy(sentence_copy, nmea_sentence, sizeof(sentence_copy) - 1);
sentence_copy[sizeof(sentence_copy) - 1] = '\0';
char *token = strtok(sentence_copy, ",");
int field_index = 0;
double latitude = 0.0, longitude = 0.0;
char lat_dir = 'N', lon_dir = 'E';
while (token != NULL)
{
switch (field_index)
{
case 1:
if (strlen(token) >= 6)
{
sscanf(token, "%2hhu%2hhu%2hhu",
&gps_data->time.hour,
&gps_data->time.minute,
&gps_data->time.second);
char *dot = strchr(token, '.');
if (dot && strlen(dot) > 1)
{
gps_data->time.millisecond = atoi(dot + 1);
}
}
break;
case 2:
latitude = atof(token);
break;
case 3:
lat_dir = token[0];
break;
case 4:
longitude = atof(token);
break;
case 5:
lon_dir = token[0];
break;
case 6:
gps_data->fix_quality = atoi(token);
break;
case 7:
gps_data->satellites = atoi(token);
break;
case 9:
gps_data->altitude = atof(token);
break;
default:
break;
}
token = strtok(NULL, ",");
field_index++;
}
if (latitude > 0)
{
double lat_deg = (int)(latitude / 100);
double lat_min = latitude - (lat_deg * 100);
gps_data->latitude = lat_deg + (lat_min / 60.0);
if (lat_dir == 'S') gps_data->latitude = -gps_data->latitude;
}
if (longitude > 0)
{
double lon_deg = (int)(longitude / 100);
double lon_min = longitude - (lon_deg * 100);
gps_data->longitude = lon_deg + (lon_min / 60.0);
if (lon_dir == 'W') gps_data->longitude = -gps_data->longitude;
}
gps_data->is_valid = (gps_data->fix_quality > 0);
return gps_data->is_valid;
}
bool parse_gprmc(const char *nmea_sentence, gps_data_t *gps_data, gps_time_t *time_data)
{
if (!nmea_sentence || !gps_data || !time_data || strncmp(nmea_sentence, "$GPRMC", 6) != 0)
{
return false;
}
char sentence_copy[256];
strncpy(sentence_copy, nmea_sentence, sizeof(sentence_copy) - 1);
sentence_copy[sizeof(sentence_copy) - 1] = '\0';
char *token = strtok(sentence_copy, ",");
int field_index = 0;
while (token != NULL)
{
switch (field_index)
{
case 1:
if (strlen(token) >= 6)
{
sscanf(token, "%2hhu%2hhu%2hhu",
&time_data->hour,
&time_data->minute,
&time_data->second);
char *dot = strchr(token, '.');
if (dot && strlen(dot) > 1)
{
time_data->millisecond = atoi(dot + 1);
}
}
break;
default:
break;
}
token = strtok(NULL, ",");
field_index++;
}
return true;
}
void print_gps_data(const gps_data_t *gps_data)
{
if (!gps_data || !gps_data->is_valid)
{
printf("GPS Data: No valid fix\r\n");
return;
}
printf("=== GPS Information ===\r\n");
printf("Time: %02d:%02d:%02d",
gps_data->time.hour,
gps_data->time.minute,
gps_data->time.second);
if (gps_data->time.millisecond > 0)
{
printf(".%03d", gps_data->time.millisecond);
}
printf(" UTC\r\n");
printf("Latitude: %.6f°\r\n", gps_data->latitude);
printf("Longitude: %.6f°\r\n", gps_data->longitude);
printf("Altitude: %.1f m\r\n", gps_data->altitude);
printf("Satellites: %d\r\n", gps_data->satellites);
printf("Fix Quality: %d (", gps_data->fix_quality);
switch (gps_data->fix_quality)
{
case 0: printf("Invalid"); break;
case 1: printf("GPS Fix"); break;
case 2: printf("DGPS Fix"); break;
case 3: printf("PPS Fix"); break;
case 4: printf("RTK Fixed"); break;
case 5: printf("RTK Float"); break;
case 6: printf("Estimated"); break;
case 7: printf("Manual"); break;
case 8: printf("Simulation"); break;
default: printf("Unknown"); break;
}
printf(")\r\n");
printf("========================\r\n");
}
void print_gps_time(const gps_time_t *time_data)
{
if (time_data)
{
printf("GPS Time: %02d:%02d:%02d",
time_data->hour, time_data->minute, time_data->second);
if (time_data->millisecond > 0)
{
printf(".%03d", time_data->millisecond);
}
printf(" UTC\r\n");
}
else
{
printf("Time: No data\r\n");
}
}
gps_parser.h
#ifndef GPS_PARSER_H
#define GPS_PARSER_H
#include <stdint.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
uint8_t hour;
uint8_t minute;
uint8_t second;
uint16_t millisecond;
} gps_time_t;
typedef struct {
double latitude;
double longitude;
float altitude;
uint8_t satellites;
uint8_t fix_quality;
bool is_valid;
gps_time_t time;
} gps_data_t;
void gps_parser_init(void);
bool parse_gpgga(const char *nmea_sentence, gps_data_t *gps_data);
bool parse_gprmc(const char *nmea_sentence, gps_data_t *gps_data, gps_time_t *time_data);
void print_gps_data(const gps_data_t *gps_data);
void print_gps_time(const gps_time_t *time_data);
#ifdef __cplusplus
}
#endif
#endif
保存代码,构建工程、调试工程。
效果演示
- TypeC - USB 数据线连接开发板串口和电脑;
- 打开串口调试助手,连接并打开板载串口 9,配置对应的波特率等参数;
- 打开串口,即可接收读取到的 GPS 原始数据和解析数据;

解析数据包括时间、日期、经纬度、速度等信息。
动态效果见底部视频。
总结
本文介绍了 RA-Eco-RA4E2-64PIN-V1.0 通过串口通信接口 UART 读取 GPS 模块,并串口发送原始数据和解析数据的项目设计,为该产品的相关开发设计与快速应用提供了参考。