发 帖  
原厂入驻New
[资料]

转:开源一个F334的多功能数控电源,基于HAL库编写

2016-8-23 15:54:59  3612 电源 数控
分享




PCB3D视角

连续调压

过流保护

保护恢复



从最基本的说起吧,DC-DC的变换电路有很多种,线性电源开关电源、电荷泵,线性电源大家比较熟悉的应该就是78XX系列的芯片了,电荷泵主要用在小电流的应用中,我们也不加讨论。主要讲讲开关电源,我呢也是一个先学先卖的人,就对照资料啥的随便介绍下拉,权当是开源本设计前的一点准备工作。


开关稳压器的工作原理,就是通过控制电路来控制开关器件的通断,配合负反馈完成稳压,跟线性稳压比起来,具有效率高体积小的特点,但是输出没有线性电源稳定。开关电源的基本结构有很多种,包括BUCK、BOOST、BUCK-BOOST、CUK等非隔离式的DCDC变换器,也有flyback、LLC等隔离式的DCDC变换器。
开源的这个设计,是以buck拓扑为核心,配合F334的高级定时器的PWM、PI算法,实现的一个很简单的闭环控制,设计输入电压60V时,输出电压可调,输出电流最大5A,输出最大功率在200W左右。



系统框图如上,首先说明我这款电压是从HP电源的基础上增加人机界面和改善栅极驱动做的,也是征得了原作者的同意,在此表示感谢,借这个机会分享下自己的心得。

BUCK电路的基本结构如上图所示,相信大家基本或多或少对这个结构都有一定的了解。简单说下,S1闭合时,输入的通路为S1到L1到电容C2以及负载,S2关断时,L1中储存的能量经过D1形成新的回路,如此循环往复,在此过程中实现能量的转移,输出与输入电压的比值为占空比D。

同步BUCK,就是采用导通电阻特别低的mosfet来代替续流二极管,以此来提高整个拓扑的工作效率。基本图如下:

在有了以上了解的基础上,开始本设计的电路设计,亦即在同步buck的基本拓扑之上展开设计,最终设计如下:


图中采用了无电解电容设计,这样虽然纹波可能会大一点,但是响应的体积却小了很多,实际测试中,纹波在100MV以下。电感和电容的取值有响应公式可以推到,这里不多赘述,直接给大家提供一个小工具,输入参数就可以计算出结果的小工具:
2
分享淘帖 显示全部楼层
最近下载过的用户(17)
· 2016-8-24 08:50:20
顶!
· 2016-8-24 08:55:00
学习一下吧!!!!!!!!嵌入式培训www.arm8.net
· 2016-8-24 09:35:48
谢谢支持,,,,,,
· 2016-8-24 09:41:36
下面谈一谈程序的设计思路,因为这款设计为了尽可能减少体积,因此使用了较大频率的PWM波,取值为250k,所采用的主控stm32f334是意法半导体专为数控电源所设计的一款MCU。STM32F334xx微控制器具有高分辨率定时器(HRTIM)外设,可产生多达10个信号,能够处理用于控制、同步或保护的各种不同输入信号。其模块化架构允许对大部分转换拓扑和多并联转换器进行处理,并可在运行中重新配置它们。



在如上所示的拓扑当中,包括输出电压读数和过流保护(利用FAULT输入),使在电流超出可编程阈值时关闭转换器。为简单起见,此处不讨论电流传感器和调整电路;预期的FAULT反馈(在FLT1输入上)为数字信号(在PA12输入上)。
HRTIM工作于连续模式,PWM信号定义如下:
• TA1:在 TA Period 置位,在 TA CMP2 复位
• TA2:利用死区时间发生器,与 TA1 互补 (相同的上升沿和下降沿死区时间)




需要注意的是,有关AD采样的触发时机选择是一个很关键的点,如下图所示,对于特定占空比的PWM波,在其中央触发AD工作,这样可以避免纹波的影响。

[size=0.83em]QQ截图20160823135730.jpg (28.96 KB, 下载次数: 0)
下载附件
[color=rgb(153, 153, 153) !important]3 小时前 上传





由此,通过AD采样的输出电压与设定的电压一起,配合PI调节占空比,即完成了闭环反馈过程,通过对输出电压电流的编程,即完成电池充电程序的编写。
· 2016-8-24 09:42:03
这里给出配置的代码和PI的代码。
/***************************************************************************
#define PWM_PERIOD = 144000000*32/switchfrequency
#define DT_RISING = risingtime*switchfrequency*PWM_PERIOD
#define DT_FALLING = fallingtime*switchfrequency*PWM_PERIOD
***************************************************************************/
/**
  * @brief  用于配置HRTIM_A的输出,关闭deadtime时,为单输出,开启deadtime时,为双输出。
  * @param  死区使能,配套AD采样使能,错误使能,中断使能,初始频率,初始占空比(HO),中断频率,上升死区时间(单位纳秒),下降死区时间
  * @retval None
  */
void MY_BSP_Init_HRTIM_A(BOOLEAN deadtime,BOOLEAN adenable,BOOLEAN faultenable,BOOLEAN interrupt,uint32_t Initial_Fre,uint8_t Initial_Duty,uint8_t n_ISR,uint8_t risingtime,uint8_t fallingtime)
{
  HRTIM_TimeBaseCfgTypeDef timebase_config;
  HRTIM_TimerCfgTypeDef timer_config;
  HRTIM_OutputCfgTypeDef output_config_TA;
  HRTIM_CompareCfgTypeDef compare_config;
  /* ----------------------------*/
  /* HRTIM Global initialization */
  /* ----------------------------*/
  /* Initialize the hrtim structure (minimal configuration) */
  hhrtimA.Instance = HRTIM1;
  hhrtimA.Init.HRTIMInterruptResquests = HRTIM_IT_NONE;
  hhrtimA.Init.SyncOptions = HRTIM_SYNCOPTION_NONE;

  /* Initialize HRTIM */
  HAL_HRTIM_Init(&hhrtimA);

  /* HRTIM DLL calibration: periodic calibration, set period to 14祍 */
  HAL_HRTIM_DLLCalibrationStart(&hhrtimA, HRTIM_CALIBRATIONRATE_14);
  /* Wait calibration completion*/
  if (HAL_HRTIM_PollForDLLCalibration(&hhrtimA, 100) != HAL_OK)
  {
    Error_Handler(); // if DLL or clock is not correctly set
  }        
  /* --------------------------------------------------- */
  /* TIMERA initialization: timer mode and PWM frequency */
  /* --------------------------------------------------- */
  timebase_config.Period = 4608000000/Initial_Fre; /* 400kHz switching frequency */
  timebase_config.RepetitionCounter = n_ISR - 1; /* n ISR every 128 PWM periods */
  timebase_config.PrescalerRatio = HRTIM_PRESCALERRATIO_MUL32;
  timebase_config.Mode = HRTIM_MODE_CONTINUOUS;
        HAL_HRTIM_TimeBaseConfig(&hhrtimA, HRTIM_TIMERINDEX_TIMER_A, &timebase_config);        
  /* --------------------------------------------------------------------- */
  /* TIMERA global configuration: cnt reset, sync, update, fault, burst... */
  /* timer running in continuous mode, with deadtime enabled               */
  /* --------------------------------------------------------------------- */
  timer_config.DMARequests = HRTIM_TIM_DMA_NONE;
  timer_config.DMASrcAddress = 0x0;
  timer_config.DMADstAddress = 0x0;
  timer_config.DMASize = 0x0;
  timer_config.HalfModeEnable = HRTIM_HALFMODE_DISABLED;
  timer_config.StartOnSync = HRTIM_SYNCSTART_DISABLED;
  timer_config.ResetOnSync = HRTIM_SYNCRESET_DISABLED;
  timer_config.DACSynchro = HRTIM_DACSYNC_NONE;
  timer_config.PreloadEnable = HRTIM_PRELOAD_ENABLED;
  timer_config.UpdateGating = HRTIM_UPDATEGATING_INDEPENDENT;
  timer_config.BurstMode = HRTIM_TIMERBURSTMODE_MAINTAINCLOCK;
  timer_config.RepetitionUpdate = HRTIM_UPDATEONREPETITION_ENABLED;
  timer_config.ResetUpdate = HRTIM_TIMUPDATEONRESET_DISABLED;
        if(interrupt == TRUE)
        {
                timer_config.InterruptRequests = HRTIM_TIM_IT_REP;
        }
        else
                timer_config.InterruptRequests = HRTIM_TIM_IT_NONE;
  timer_config.PushPull = HRTIM_TIMPUSHPULLMODE_DISABLED;
        if(faultenable == TRUE)
                timer_config.FaultEnable = HRTIM_TIMFAULTENABLE_FAULT1;
        else
                timer_config.FaultEnable = HRTIM_TIMFAULTENABLE_NONE;
  timer_config.FaultLock = HRTIM_TIMFAULTLOCK_READWRITE;
  timer_config.DeadTimeInsertion = HRTIM_TIMDEADTIMEINSERTION_ENABLED;
  timer_config.DelayedProtectionMode = HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DISABLED;
  timer_config.UpdateTrigger= HRTIM_TIMUPDATETRIGGER_NONE;
  timer_config.ResetTrigger = HRTIM_TIMRESETTRIGGER_NONE;
        HAL_HRTIM_WaveformTimerConfig(&hhrtimA, HRTIM_TIMERINDEX_TIMER_A, &timer_config);        
        
  /* Set compare registers for duty cycle on TA1 */
  compare_config.CompareValue = 46080000*Initial_Duty/Initial_Fre;  /*duty cycle */
  HAL_HRTIM_WaveformCompareConfig(&hhrtimA,
                                  HRTIM_TIMERINDEX_TIMER_A,
                                  HRTIM_COMPAREUNIT_1,
                                  &compare_config);        
        /* --------------------------------- */
  /* TA1 and TA2 waveforms description */
  /* --------------------------------- */
  output_config_TA.Polarity = HRTIM_OUTPUTPOLARITY_HIGH;
  output_config_TA.SetSource = HRTIM_OUTPUTSET_TIMPER;
  output_config_TA.ResetSource  = HRTIM_OUTPUTRESET_TIMCMP1;
  output_config_TA.IdleMode = HRTIM_OUTPUTIDLEMODE_NONE;
  output_config_TA.IdleLevel = HRTIM_OUTPUTIDLELEVEL_INACTIVE;
  output_config_TA.FaultLevel = HRTIM_OUTPUTFAULTLEVEL_INACTIVE;
  output_config_TA.ChopperModeEnable = HRTIM_OUTPUTCHOPPERMODE_DISABLED;
  output_config_TA.BurstModeEntryDelayed = HRTIM_OUTPUTBURSTMODEENTRY_REGULAR;
  HAL_HRTIM_WaveformOutputConfig(&hhrtimA,
                                 HRTIM_TIMERINDEX_TIMER_A,
                                 HRTIM_OUTPUT_TA1,
                                 &output_config_TA);
        if(deadtime == TRUE)
        {
                HAL_HRTIM_WaveformOutputConfig(&hhrtimA,
                                                                                                                                                HRTIM_TIMERINDEX_TIMER_A,
                                                                                                                                                HRTIM_OUTPUT_TA2,
                                                                                                                                                &output_config_TA);
        }        
        if(deadtime == TRUE)
        {
                HRTIM_DeadTimeCfgTypeDef HRTIM_TIM_DeadTimeConfig;
          /* Deadtime configuration for Timer A */
                HRTIM_TIM_DeadTimeConfig.FallingLock = HRTIM_TIMDEADTIME_FALLINGLOCK_WRITE;
                HRTIM_TIM_DeadTimeConfig.FallingSign = HRTIM_TIMDEADTIME_FALLINGSIGN_POSITIVE;
                HRTIM_TIM_DeadTimeConfig.FallingSignLock = HRTIM_TIMDEADTIME_FALLINGSIGNLOCK_READONLY;
                HRTIM_TIM_DeadTimeConfig.FallingValue = risingtime*4096/1000;
                HRTIM_TIM_DeadTimeConfig.Prescaler = HRTIM_TIMDEADTIME_PRESCALERRATIO_MUL8;
                HRTIM_TIM_DeadTimeConfig.RisingLock = HRTIM_TIMDEADTIME_RISINGLOCK_WRITE;
                HRTIM_TIM_DeadTimeConfig.RisingSign = HRTIM_TIMDEADTIME_RISINGSIGN_POSITIVE;
                HRTIM_TIM_DeadTimeConfig.RisingSignLock = HRTIM_TIMDEADTIME_RISINGSIGNLOCK_READONLY;
                HRTIM_TIM_DeadTimeConfig.RisingValue = fallingtime*4096/1000;
                HAL_HRTIM_DeadTimeConfig(&hhrtimA, HRTIM_TIMERINDEX_TIMER_A, &HRTIM_TIM_DeadTimeConfig);               
        }
        if(adenable == TRUE)
        {
                HRTIM_ADCTriggerCfgTypeDef adc_trigger_config;
                /* ------------------------------------------- */
                /* ADC trigger intialization (with CMP4 event) */
                /* ------------------------------------------- */
                compare_config.AutoDelayedMode = HRTIM_AUTODELAYEDMODE_REGULAR;
                compare_config.AutoDelayedTimeout = 0;
                if(Initial_Duty >=50)
                        compare_config.CompareValue = 46080000*Initial_Duty/Initial_Fre; /* Samples in middle of ON time */
                else                                                                                                                                                               
                        compare_config.CompareValue = 23040000*(100+Initial_Duty)/Initial_Fre;
                HAL_HRTIM_WaveformCompareConfig(&hhrtimA,
                                                                                                                                                HRTIM_TIMERINDEX_TIMER_A,
                                                                                                                                                HRTIM_COMPAREUNIT_4,
                                                                                                                                                &compare_config);

                adc_trigger_config.Trigger = HRTIM_ADCTRIGGEREVENT24_TIMERA_CMP4;
                adc_trigger_config.UpdateSource = HRTIM_ADCTRIGGERUPDATE_TIMER_A;
                HAL_HRTIM_ADCTriggerConfig(&hhrtimA,
                                                                                                                         HRTIM_ADCTRIGGER_2,
                                                                                                                         &adc_trigger_config);
        }
        if(faultenable == TRUE)
        {
                HRTIM_FaultCfgTypeDef fault_config;
                /* ---------------------*/
                /* FAULT initialization */
                /* ---------------------*/
                fault_config.Filter = HRTIM_FAULTFILTER_NONE;
                fault_config.Lock = HRTIM_FAULTLOCK_READWRITE;
                fault_config.Polarity = HRTIM_FAULTPOLARITY_LOW;
                fault_config.Source = HRTIM_FAULTSOURCE_DIGITALINPUT;
                HAL_HRTIM_FaultConfig(&hhrtimA,
                                                                                                        HRTIM_FAULT_1,
                                                                                                        &fault_config);

                HAL_HRTIM_FaultModeCtl(&hhrtimA,
                                                                                                        HRTIM_FAULT_1,
                                                                                                        HRTIM_FAULTMODECTL_ENABLED);
        }
        if(deadtime == TRUE)
        {
                /* ---------------*/
                /* HRTIM start-up */
                /* ---------------*/
                /* Enable HRTIM's outputs TA1 and TA2 */
                /* Note: it is necessary to enable also GPIOs to have outputs functional */
                /* This must be done after HRTIM initialization */
                HAL_HRTIM_WaveformOutputStart(&hhrtimA, HRTIM_OUTPUT_TA1 | HRTIM_OUTPUT_TA2);        
        }
        else
                HAL_HRTIM_WaveformOutputStart(&hhrtimA, HRTIM_OUTPUT_TA1);        
        
  /* Start both HRTIM TIMER A, B and D */
        if(interrupt == TRUE)
                HAL_HRTIM_WaveformCounterStart_IT(&hhrtimA, HRTIM_TIMERID_TIMER_A);
        else
                HAL_HRTIM_WaveformCounterStart(&hhrtimA, HRTIM_TIMERID_TIMER_A);
        
        
        
        GPIO_InitTypeDef GPIO_InitStruct;

  /* Enable GPIOA clock for timer A outputs */
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /* Configure HRTIM output: TA1 (PA8) */
  GPIO_InitStruct.Pin = GPIO_PIN_8;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;;  
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;;  
  GPIO_InitStruct.Alternate = GPIO_AF13_HRTIM1;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

        if(deadtime == TRUE)
        {
                /* Configure HRTIM output: TA2 (PA9) */
                GPIO_InitStruct.Pin = GPIO_PIN_9;
                HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
        }
}
· 2016-8-24 09:42:24
/**
* @brief  This function calculates new duty order with PI.
* @param  None
* @retval New duty order
*/
int32_t PI_Buck(uint32_t RealVol,uint32_t SetVol,int32_t dec2hex(int32_t temp))
{
  /* Compute PI for Buck Mode */
  /* Every time the PI order sets extreme values then CTMax or CTMin are managed */
  int32_t seterr, pid_out;
  int32_t error;
        
  error = ((int32_t ) RealVol - (int32_t) SetVol);
        error = dec2hex(error);
        
  seterr = (-Kp * error) / 200;

  Int_term_Buck = Int_term_Buck + ((-Ki * error) / 200);

  if (Int_term_Buck > SAT_LIMIT)
  {
    Int_term_Buck = SAT_LIMIT;
  }
  if (Int_term_Buck < -(SAT_LIMIT))
  {
    Int_term_Buck = -(SAT_LIMIT);
  }
  pid_out = seterr + Int_term_Buck;
  pid_out += BUCK_PWM_PERIOD / 2;

  if (pid_out >= MAX_DUTY_A)
  {
    pid_out = MAX_DUTY_A;
    CTMax++;
  }
  else
  {
    if (CTMax != 0)
    {
      CTMax--;
    }
  }
  if (pid_out <= MIN_DUTY_A)
  {
    pid_out = MIN_DUTY_A;
    CTMin++;
  }
  else
  {
    if (CTMin != 0)
    {
      CTMin--;
    }
  }
  return  pid_out;
}
· 2016-8-24 09:45:59
给出原理图和工程文件:

BOOST电感、BUKC电感、逆变电容、电感计算表.rar

下载积分: 积分 -1 分

8.36 KB, 下载次数: 31, 下载积分: 积分 -1 分

F334Power.pdf

下载积分: 积分 -1 分

1 MB, 下载次数: 44, 下载积分: 积分 -1 分

mybuck2.0.rar

下载积分: 积分 -1 分

857.63 KB, 下载次数: 47, 下载积分: 积分 -1 分

· 2016-8-24 09:46:53
分享完成,,,,,,,,,,
· 2016-8-26 09:57:29
谢谢分享
· 2016-8-26 09:58:41
谢谢分享
· 2016-8-26 09:58:59
学习学习
· 2016-8-26 22:11:51
共同进步,,,,,,,,,,,
· 2016-11-10 16:44:15
lee_st 发表于 2016-8-24 09:45
给出原理图和工程文件:

学习中!!!!!!!!!!!!!!!!!!!!!
· 2016-11-11 08:56:37
谢谢支持,,,,
· 2017-7-13 12:26:50
多功能数控电源
· 2017-7-14 00:11:10
是的,多功能电源
· 2017-7-14 00:11:25
非常不错的资料的,
· 2017-7-14 00:11:56
大家都可以进来看看的,
· 2017-7-14 00:12:11
都是很不错的经验的

评论

高级模式
您需要登录后才可以回帖 登录 | 注册

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容图片侵权或者其他问题,请联系本站作侵删。 侵权投诉
12下一页
发资料
关闭

站长推荐 上一条 /8 下一条

快速回复 返回顶部 返回列表