完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
扫一扫,分享给好友
就相当与一个开关
|
|
|
|
1、直充保护点电压:直充也叫急充,属于快速充电,一般都是在蓄电池电压较低的时候用大电流和相对高电压对蓄电池充电,但是,有个控制点,也叫保护点,就是上表中的数值,当充电时蓄电池端电压高于这些保护值时,应停止直充。直充保护点电压一般也是“过充保护点”电压,充电时蓄电池端电压不能高于这个保护点,否则会造成过充电,对蓄电池是有损害的。[1]
2、均充控制点电压:直充结束后,蓄电池一般会被充放电控制器静置一段时间,让其电压自然下落,当下落到“恢复电压”值时,会进入均充状态。为什么要设计均充?就是当直充完毕之后,可能会有个别电池“落后”(端电压相对偏低),为了将这些个别分子拉回来,使所有的电池端电压具有均匀一致性,所以就要以高电压配以适中的电流再充那么一小会,可见所谓均充,也就是“均衡充电”。均充时间不宜过长,一般为几分钟~十几分钟,时间设定太长反而有害。对配备一块两块蓄电池的小型系统而言,均充意义不大。所以,路灯控制器一般不设均充,只有两个阶段。[1] 3、浮充控制点电压:一般是均充完毕后,蓄电池也被静置一段时间,使其端电压自然下落,当下落至“维护电压”点时,就进入浮充状态,类似于“涓流充电”(即小电流充电),电池电压一低就充上一点,一低就充上一点,一股一股地来,以免电池温度持续升高,这对蓄电池来说是很有好处的,因为电池内部温度对充放电的影响很大。其实PWM方式主要是为了稳定蓄电池端电压而设计的,通过调节脉冲宽度来减小蓄电池充电电流。这是非常科学的充电管理制度。具体来说就是在充电后期、蓄电池的剩余电容量(SOC)>80%时,就必须减小充电电流,以防止因过充电而过多释气(氧气、氢气和酸气)。[1] 4、过放保护终止电压:这比较好理解。蓄电池放电不能低于这个值,这是国标的规定。蓄电池厂家虽然也有自己的保护参数(企标或行标),但最终还是要向国标靠拢的。需要注意的是,为了安全起见,一般将12V电池过放保护点电压人为加上0.3v作为温度补偿或控制电路的零点漂移校正,这样12V电池的过放保护点电压即为:11.10v,那么24V系统的过放保护点电压就为22.20V 。[1] 编辑本段相关选择保护电压 一些客户经常发现,太阳能路灯在亮了一段时间后,尤其是连续阴雨天之后,路灯就会连续几天甚至很多天不亮,检测蓄电池电压也正常,控制器、灯也都没有故障。 这个问题曾经让很多工程商疑惑,其实这个是“退出欠压保护”的电压值的问题,这个值设置的越高,在欠压后的恢复时间越长,也就造成了很多天都无法亮灯。 电流输出 LED由于自身的特性,必须要通过技术手段对其进行恒流或限流,否则无法正常使用。常见的LED灯都是通过另加一个驱动电源来实现对LED灯的恒流,但是这个驱动却占到整个灯总功率的10%-20%左右,比如一个理论值42W的LED灯,加上驱动后实际功率可能在46-50W左右。在计算电池板功率和蓄电池容量的时候,必须多加10%-20%来满足驱动所造成的功耗。除此以外,多加了驱动就多了一个产生故障的环节。工业版控制器通过软件进行无功耗恒流,稳定性高,降低了整体功耗。 输出时段 普通的控制器一般只能设置开灯后4小时或者8小时等若干个小时关闭,已经无法满足众多客户的需求。工业版控制器可以分成3个时段,每个时段的时间可任意设置,根据使用环境的不同,每个时段可以设置成关闭状态。比如有些厂区或者风景区夜间无人,可以把第二个时段(深夜)关闭,或者第二、第三个时段都关闭,降低使用成本。 输出功率 在太阳能应用的灯具当中,LED灯是最适合通过脉宽调节来实现输出不同的功率。限制脉宽或者限制电流的同时,对LED灯整个输出的占空比进行调节,例如单颗1W的LED 7串5并合计35W的LED灯,在夜间放电,可以将深夜和凌晨的时段分别进行功率调节,如深夜调节成15W、凌晨调节成25W,并锁定电流,这样即可以满足整夜的照明,又节约了电池板、蓄电池的配置成本。经长期试验证明,脉宽调节方式的LED灯,整灯产生的热量要小的多,能够延长LED的使用寿命。 有些灯厂在为了达到夜间省电的目的,把LED灯的内部做成2路电源,夜间关闭一路电源来实现输出功率的减半,但实践证明,此种方法只会导致一半的光源首先光衰,亮度不一致或者一路光源提早损坏。 线损补偿 根据不同的线径与线长给予自动补偿。线损补偿在低压系统中其实是很重要的,因为电压较低,线损相对比较大,如果没有相应的线损电压补偿,输出端的电压可能会低于输入端很多,这样就会造成蓄电池提前欠压保护,蓄电池容量的实际应用率被打了折扣。值得注意的是,我们在使用低压系统时,为了降低线损压降,尽量不要使用太细的线缆,线缆也不要过长。 散热 很多控制器为了降低成本,没有考虑散热问题,这样负载电流较大或者充电电流较大时,热量增加,控制器的场管内阻被增大,导致充电效率大幅下降,场管过热后使用寿命也大大降低甚至被烧毁,尤其夏季的室外环境温度就很高,所以良好的散热装置应该是控制器必不可少的。 充电模式 常规的太阳能控制器的充电模式是照抄了市电充电器的三段式充电方法,即恒流、恒压、浮充三个阶段。因为市电电网的能量无限大,如果不进行恒流充电,会直接导致蓄电池充爆而损坏,但是太阳能路灯系统的电池板功率有限,所以继续延用市电控制器恒流的充电方式是不科学的,如果电池板产生的电流大于控制器第一段限制的电流,那么就造成了充电效率的下降。MCT充电方式就是追踪电池板的最大电流,不造成浪费,通过检测蓄电池的电压以及计算温度补偿值,当蓄电池的电压接近峰值的时候,再采取脉冲式的涓流充电方法,既能让蓄电池充满也防止了蓄电池的过充。[2] |
|
|
|
1、直充保护点电压:直充也叫急充,属于快速充电,一般都是在蓄电池电压较低的时候用大电流和相对高电压对蓄电池充电,但是,有个控制点,也叫保护点,就是上表中的数值,当充电时蓄电池端电压高于这些保护值时,应停止直充。直充保护点电压一般也是“过充保护点”电压,充电时蓄电池端电压不能高于这个保护点,否则会造成过充电,对蓄电池是有损害的。[1]
2、均充控制点电压:直充结束后,蓄电池一般会被充放电控制器静置一段时间,让其电压自然下落,当下落到“恢复电压”值时,会进入均充状态。为什么要设计均充?就是当直充完毕之后,可能会有个别电池“落后”(端电压相对偏低),为了将这些个别分子拉回来,使所有的电池端电压具有均匀一致性,所以就要以高电压配以适中的电流再充那么一小会,可见所谓均充,也就是“均衡充电”。均充时间不宜过长,一般为几分钟~十几分钟,时间设定太长反而有害。对配备一块两块蓄电池的小型系统而言,均充意义不大。所以,路灯控制器一般不设均充,只有两个阶段。[1] 3、浮充控制点电压:一般是均充完毕后,蓄电池也被静置一段时间,使其端电压自然下落,当下落至“维护电压”点时,就进入浮充状态,类似于“涓流充电”(即小电流充电),电池电压一低就充上一点,一低就充上一点,一股一股地来,以免电池温度持续升高,这对蓄电池来说是很有好处的,因为电池内部温度对充放电的影响很大。其实PWM方式主要是为了稳定蓄电池端电压而设计的,通过调节脉冲宽度来减小蓄电池充电电流。这是非常科学的充电管理制度。具体来说就是在充电后期、蓄电池的剩余电容量(SOC)>80%时,就必须减小充电电流,以防止因过充电而过多释气(氧气、氢气和酸气)。[1] 4、过放保护终止电压:这比较好理解。蓄电池放电不能低于这个值,这是国标的规定。蓄电池厂家虽然也有自己的保护参数(企标或行标),但最终还是要向国标靠拢的。需要注意的是,为了安全起见,一般将12V电池过放保护点电压人为加上0.3v作为温度补偿或控制电路的零点漂移校正,这样12V电池的过放保护点电压即为:11.10v,那么24V系统的过放保护点电压就为22.20V 。[1] 编辑本段相关选择保护电压 一些客户经常发现,太阳能路灯在亮了一段时间后,尤其是连续阴雨天之后,路灯就会连续几天甚至很多天不亮,检测蓄电池电压也正常,控制器、灯也都没有故障。 这个问题曾经让很多工程商疑惑,其实这个是“退出欠压保护”的电压值的问题,这个值设置的越高,在欠压后的恢复时间越长,也就造成了很多天都无法亮灯。 电流输出 LED由于自身的特性,必须要通过技术手段对其进行恒流或限流,否则无法正常使用。常见的LED灯都是通过另加一个驱动电源来实现对LED灯的恒流,但是这个驱动却占到整个灯总功率的10%-20%左右,比如一个理论值42W的LED灯,加上驱动后实际功率可能在46-50W左右。在计算电池板功率和蓄电池容量的时候,必须多加10%-20%来满足驱动所造成的功耗。除此以外,多加了驱动就多了一个产生故障的环节。工业版控制器通过软件进行无功耗恒流,稳定性高,降低了整体功耗。 输出时段 普通的控制器一般只能设置开灯后4小时或者8小时等若干个小时关闭,已经无法满足众多客户的需求。工业版控制器可以分成3个时段,每个时段的时间可任意设置,根据使用环境的不同,每个时段可以设置成关闭状态。比如有些厂区或者风景区夜间无人,可以把第二个时段(深夜)关闭,或者第二、第三个时段都关闭,降低使用成本。 输出功率 在太阳能应用的灯具当中,LED灯是最适合通过脉宽调节来实现输出不同的功率。限制脉宽或者限制电流的同时,对LED灯整个输出的占空比进行调节,例如单颗1W的LED 7串5并合计35W的LED灯,在夜间放电,可以将深夜和凌晨的时段分别进行功率调节,如深夜调节成15W、凌晨调节成25W,并锁定电流,这样即可以满足整夜的照明,又节约了电池板、蓄电池的配置成本。经长期试验证明,脉宽调节方式的LED灯,整灯产生的热量要小的多,能够延长LED的使用寿命。 有些灯厂在为了达到夜间省电的目的,把LED灯的内部做成2路电源,夜间关闭一路电源来实现输出功率的减半,但实践证明,此种方法只会导致一半的光源首先光衰,亮度不一致或者一路光源提早损坏。 线损补偿 根据不同的线径与线长给予自动补偿。线损补偿在低压系统中其实是很重要的,因为电压较低,线损相对比较大,如果没有相应的线损电压补偿,输出端的电压可能会低于输入端很多,这样就会造成蓄电池提前欠压保护,蓄电池容量的实际应用率被打了折扣。值得注意的是,我们在使用低压系统时,为了降低线损压降,尽量不要使用太细的线缆,线缆也不要过长。 散热 很多控制器为了降低成本,没有考虑散热问题,这样负载电流较大或者充电电流较大时,热量增加,控制器的场管内阻被增大,导致充电效率大幅下降,场管过热后使用寿命也大大降低甚至被烧毁,尤其夏季的室外环境温度就很高,所以良好的散热装置应该是控制器必不可少的。 充电模式 常规的太阳能控制器的充电模式是照抄了市电充电器的三段式充电方法,即恒流、恒压、浮充三个阶段。因为市电电网的能量无限大,如果不进行恒流充电,会直接导致蓄电池充爆而损坏,但是太阳能路灯系统的电池板功率有限,所以继续延用市电控制器恒流的充电方式是不科学的,如果电池板产生的电流大于控制器第一段限制的电流,那么就造成了充电效率的下降。MCT充电方式就是追踪电池板的最大电流,不造成浪费,通过检测蓄电池的电压以及计算温度补偿值,当蓄电池的电压接近峰值的时候,再采取脉冲式的涓流充电方法,既能让蓄电池充满也防止了蓄电池的过充。[2] |
|
|
|
1、直充保护点电压:直充也叫急充,属于快速充电,一般都是在蓄电池电压较低的时候用大电流和相对高电压对蓄电池充电,但是,有个控制点,也叫保护点,就是上表中的数值,当充电时蓄电池端电压高于这些保护值时,应停止直充。直充保护点电压一般也是“过充保护点”电压,充电时蓄电池端电压不能高于这个保护点,否则会造成过充电,对蓄电池是有损害的。[1]
2、均充控制点电压:直充结束后,蓄电池一般会被充放电控制器静置一段时间,让其电压自然下落,当下落到“恢复电压”值时,会进入均充状态。为什么要设计均充?就是当直充完毕之后,可能会有个别电池“落后”(端电压相对偏低),为了将这些个别分子拉回来,使所有的电池端电压具有均匀一致性,所以就要以高电压配以适中的电流再充那么一小会,可见所谓均充,也就是“均衡充电”。均充时间不宜过长,一般为几分钟~十几分钟,时间设定太长反而有害。对配备一块两块蓄电池的小型系统而言,均充意义不大。所以,路灯控制器一般不设均充,只有两个阶段。[1] 3、浮充控制点电压:一般是均充完毕后,蓄电池也被静置一段时间,使其端电压自然下落,当下落至“维护电压”点时,就进入浮充状态,类似于“涓流充电”(即小电流充电),电池电压一低就充上一点,一低就充上一点,一股一股地来,以免电池温度持续升高,这对蓄电池来说是很有好处的,因为电池内部温度对充放电的影响很大。其实PWM方式主要是为了稳定蓄电池端电压而设计的,通过调节脉冲宽度来减小蓄电池充电电流。这是非常科学的充电管理制度。具体来说就是在充电后期、蓄电池的剩余电容量(SOC)>80%时,就必须减小充电电流,以防止因过充电而过多释气(氧气、氢气和酸气)。[1] 4、过放保护终止电压:这比较好理解。蓄电池放电不能低于这个值,这是国标的规定。蓄电池厂家虽然也有自己的保护参数(企标或行标),但最终还是要向国标靠拢的。需要注意的是,为了安全起见,一般将12V电池过放保护点电压人为加上0.3v作为温度补偿或控制电路的零点漂移校正,这样12V电池的过放保护点电压即为:11.10v,那么24V系统的过放保护点电压就为22.20V 。[1] 编辑本段相关选择保护电压 一些客户经常发现,太阳能路灯在亮了一段时间后,尤其是连续阴雨天之后,路灯就会连续几天甚至很多天不亮,检测蓄电池电压也正常,控制器、灯也都没有故障。 这个问题曾经让很多工程商疑惑,其实这个是“退出欠压保护”的电压值的问题,这个值设置的越高,在欠压后的恢复时间越长,也就造成了很多天都无法亮灯。 电流输出 LED由于自身的特性,必须要通过技术手段对其进行恒流或限流,否则无法正常使用。常见的LED灯都是通过另加一个驱动电源来实现对LED灯的恒流,但是这个驱动却占到整个灯总功率的10%-20%左右,比如一个理论值42W的LED灯,加上驱动后实际功率可能在46-50W左右。在计算电池板功率和蓄电池容量的时候,必须多加10%-20%来满足驱动所造成的功耗。除此以外,多加了驱动就多了一个产生故障的环节。工业版控制器通过软件进行无功耗恒流,稳定性高,降低了整体功耗。 输出时段 普通的控制器一般只能设置开灯后4小时或者8小时等若干个小时关闭,已经无法满足众多客户的需求。工业版控制器可以分成3个时段,每个时段的时间可任意设置,根据使用环境的不同,每个时段可以设置成关闭状态。比如有些厂区或者风景区夜间无人,可以把第二个时段(深夜)关闭,或者第二、第三个时段都关闭,降低使用成本。 输出功率 在太阳能应用的灯具当中,LED灯是最适合通过脉宽调节来实现输出不同的功率。限制脉宽或者限制电流的同时,对LED灯整个输出的占空比进行调节,例如单颗1W的LED 7串5并合计35W的LED灯,在夜间放电,可以将深夜和凌晨的时段分别进行功率调节,如深夜调节成15W、凌晨调节成25W,并锁定电流,这样即可以满足整夜的照明,又节约了电池板、蓄电池的配置成本。经长期试验证明,脉宽调节方式的LED灯,整灯产生的热量要小的多,能够延长LED的使用寿命。 有些灯厂在为了达到夜间省电的目的,把LED灯的内部做成2路电源,夜间关闭一路电源来实现输出功率的减半,但实践证明,此种方法只会导致一半的光源首先光衰,亮度不一致或者一路光源提早损坏。 线损补偿 根据不同的线径与线长给予自动补偿。线损补偿在低压系统中其实是很重要的,因为电压较低,线损相对比较大,如果没有相应的线损电压补偿,输出端的电压可能会低于输入端很多,这样就会造成蓄电池提前欠压保护,蓄电池容量的实际应用率被打了折扣。值得注意的是,我们在使用低压系统时,为了降低线损压降,尽量不要使用太细的线缆,线缆也不要过长。 散热 很多控制器为了降低成本,没有考虑散热问题,这样负载电流较大或者充电电流较大时,热量增加,控制器的场管内阻被增大,导致充电效率大幅下降,场管过热后使用寿命也大大降低甚至被烧毁,尤其夏季的室外环境温度就很高,所以良好的散热装置应该是控制器必不可少的。 充电模式 常规的太阳能控制器的充电模式是照抄了市电充电器的三段式充电方法,即恒流、恒压、浮充三个阶段。因为市电电网的能量无限大,如果不进行恒流充电,会直接导致蓄电池充爆而损坏,但是太阳能路灯系统的电池板功率有限,所以继续延用市电控制器恒流的充电方式是不科学的,如果电池板产生的电流大于控制器第一段限制的电流,那么就造成了充电效率的下降。MCT充电方式就是追踪电池板的最大电流,不造成浪费,通过检测蓄电池的电压以及计算温度补偿值,当蓄电池的电压接近峰值的时候,再采取脉冲式的涓流充电方法,既能让蓄电池充满也防止了蓄电池的过充。[2] |
|
1 条评论
|
|
|
|
|
|
你正在撰写答案
如果你是对答案或其他答案精选点评或询问,请使用“评论”功能。
7 浏览 0 评论
26 浏览 1 评论
基于瑞萨FPB-RA4E2智能床头灯项目——1编译环境搭建与点亮驱动ws2812全彩LED
13 浏览 0 评论
嵌入式学习-飞凌嵌入式ElfBoard ELF 1板卡-LCD显示图片编程示例之介绍mmap
644 浏览 0 评论
《DNESP32S3使用指南-IDF版_V1.6》第二章 常用的C语言知识点
1000 浏览 0 评论
【youyeetoo X1 windows 开发板体验】少儿AI智能STEAM积木平台
11771 浏览 31 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-11-24 19:21 , Processed in 0.749252 second(s), Total 95, Slave 73 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号