完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
|
在未来的某个时候,人们必定能够相对自如地运用人工智能,安全地驾车出行。这个时刻何时到来我无法预见;但我相信,彼时“智能”会显现出更“切实”的意义。与此同时,通过深度学习方法,人工智能的实际应用能够在汽车安全系统的发展进步中发挥重要的作用。而这些系统远不止仅供典型消费者群体掌握和使用。深度学习这一概念在几十年前就已提出,但如今它与特定的应用程序、技术以及通用计算平台上的可用性能更密切相关。深度学习的“深度”层面源于输入层和输出层之间实现的隐含层数目,隐含层利用数学方法处理(筛选/卷积)各层之间的数据,从而得出最终结果。在视觉系统中,深度(vs.宽度)网络倾向于利用已识别的特征,通过构建更深的网络最终来实现更通用的识别。这些多层的优点是各种抽象层次的学习特征。例如,若训练深度卷积神经网络(CNN)来对图像进行分类,则第一层学习识别边缘等最基本的东西…
|
|
|
|
|
只有小组成员才能发言,加入小组>>
1072 浏览 1 评论
1890 浏览 0 评论
1868 浏览 1 评论
3291 浏览 5 评论
3618 浏览 9 评论
1072浏览 1评论
如何知道嵌入式电子控制单元 (ECU) 中的RAM使用情况?
1395浏览 1评论
1891浏览 0评论
1208浏览 0评论
1344浏览 0评论
/9
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-12-13 23:23 , Processed in 0.949245 second(s), Total 70, Slave 47 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191

淘帖