1、 新建目录Project_IAR4,按照自己的顺序重新组织dll(驱动);inc、src函数库;settings,其他所有文件全部放这个新建的目录下。 2、 双击打开Project.eww,继续更改内部设置。 3、 需更改的内容列表: 位置和项目 目标 说明 ProjectEdir confignations 新建基于STM3210B的配置 编译目标和过程文件存放 ProjectOptionGeneral OptionTarget ST STM32F10x 选择芯片类型 ProjectOption C/C++ CompilerPreprocessorAdditional include directories $PROJ_DIR$ $PROJ_DIR$inc 头文件相对位置,需要包括“map/lib/type”的位置 ProjectOption C/C++ CompilerPreprocessorDefined symbols 空 空白是在Flash里面调试程序,VECT_TAB_RAM是在RAM里调试程序 ProjectOption C/C++ CompilerOptimizationsSize 最终编译一般选择High 调试可选None None,Low,Medium,High是不同的代码优化等级 ProjectOption LinkerOutput 去掉Overrride default 输出格式使用默认 ProjectOption LinkerExtra Output 打开General Extra Output去掉Overrride default 厂家要求 ProjectOption LinkerConfig 打开Overrride default $PROJ_DIR$lnkarm_flash.xcl 使用Flash调试程序,如果需要使用RAM调试则改为lnkarm_RAM.xcl ProjectOption DebuggerSetupDriver Third-Party Driver 使用第三方驱动连接单片机 ProjectOption Debugger Download Use flash loader 下载到flash所需的设置 ProjectOption Debugger Third-Party Driver Third-Party DriverIAR debugger driver $PROJ_DIR$ddlSTM32Driver.dll 驱动文件路径 注1:所有跟路径相关的设置需要根据实际情况编写,相对路径的编写——“$PROJ_DIR$”代表eww文件所在文件夹,“..”代表向上一层。 注2:其他设置使用库函数里面的工程文件的默认选项即可,初学不用了解太多。 4、 需要重新删除并重新添加Project下“FWLib”和“User”的所有文件,为了删减外设模块方便需要在“USER”额外添加“stm32f10x_conf.h”(不添加也可以,需要展开main.c找到它)。然后执行ProjectRebuid All,通过则设置完毕。 5、 完成以上步骤,第一个自己习惯的程序库就建立完毕了,以后可以从“stm32f10x_conf.h”中删减各种库文件,从“stm32f10x_it.c”编辑中断,从“main.c”编写得到自己的程序。最后需要将这个库打包封存,每次解压缩并修改主目录名称即可。 6、 我的程序库特点: a) 默认兼容ST-LINK-II,IAR EWARM 4.42A,Flash调试,其他有可能需要更改设置 b) 为操作方便减少了目录的层次 c) 为学习方便使用网友汉化版2.0.2固件,主要是库函数中c代码的注释。 后面随着学习深入将在我的模板里面加入如下内容: d) 加入必用的flash(读取优化),lib(debug),nvic(中断位置判断、开中断模板),rcc(时钟管理模板,开启外设时钟模板),gpio(管脚定义模板)的初始化代码,所有模板代码用到的时候只要去掉前面的注释“//”,根据需求填入相应值就可以了。 e) 因为自己记性不好,所以main函数中的代码做到每行注释,便于自己以后使用。 f) 集成Print_U函数简单串口收发函数代码,便于调试,改变使用Printf函数的调试习惯。 g) 集成使用systick的精确延时函数delay。 h) 集成时钟故障处理代码。 i) 集成电压监控代码。 j) 集成片上温度检测代码。 k) 逐步加入所有外设的初始化模块 一、编写程序所需的步骤 1、解压缩,改目录名称,和eww文件名,以便跟其他程序区分。 2、更改设置:在“stm32f10x_conf.h”关闭不用的外设(在其声明函数前面加注释符号“//”)。并根据外部晶振速度更改其中“HSE_Value”的数值,其单位是Hz。 3、完成各种头文件的包含(#include "xxx.h";),公共变量的声明(static 数据类型 变量名称;),子程序声明(void 函数名称(参数);)……C语言必须的前置工作。 4、改写我的程序库里面所预设的模板,再进行其他模块的初始化子程序代码的编写,并在程序代码的开始部分调用。注意:必须记住所有外设的使用需要考虑4个问题: a) 开时钟RCC(在RCC初始化中); b) 自身初始化; c) 相关管脚配置(在GPIO初始化中); d) 是否使用中断(在NVIC初始化中) 5、编写main.c中的主要代码和各种子函数。 6、在“stm32f10x_it.c”填写各种中断所需的执行代码,如果用不到中断的简单程序则不用编写此文件。 7、编译生成 “bin”的方法:ProjectOption LinkerOutputFormat,里面选择“Other”,在下面的“Output”选 “raw-binary”生成bin。 8、编译生成“hex”的方法:ProjectOption LinkerOutputFormat,里面选择“Other”,在下面的“Output”选“intel-extended”,生成a79直接改名成为hex或者选中上面的“Output Flie”在“Overrride default”项目里面改扩展名为hex。 使用软件界面的Debug烧写并按钮调试程序。注意,ST-Link-II是直接将程序烧写进Flash进行调试,而不是使用RAM的方式。
STM32学前班教程之五:给等待入门的人一点点建议 入门必须阅读关文档 1、 几个重要官方文档的功能: a) Datasheet——芯片基本数据,功能参数封装管脚定义和性能规范。 b) 固件函数库用户手册——函数库功能,库函数的定义、功能和用法。 c) 参考手册——各种功能的具体描述,使用方法,原理,相关寄存器。 d) STM32F10xxx硬件开发:使用入门——相关基础硬件设计 e) STM32F10XXX的使用限制:芯片内部未解决的硬件设计bug,开发需要注意绕开。 f) 一本简单的C语言书,相信我,不用太复杂。 2、 其他的有用文档,对初学帮助很大 a) 如何使用STM32的软件库在IAR的EWARM下进行应用开发——IAR基础设置。 b) 轻松进入STM32+Cortex-M3世界.ppt——开发板和最小系统设计需求。 c) 如何选择STM32开发板.pdf——各种开发板介绍和功能比较。 d) MXCHIP的系列视频教程——全部芯片基础及其外设的教程,使用函数库编程的话就不用看每个视频后半段的关于寄存器的介绍了。 e) STM32_Technical_Slide(常见问题)——一些优化设计方案。 3、 关于参考书,买了两本但是基本对学习没什么帮助,如果凑齐以上资料,建议慎重买书,不如留着那n个几十块钱,攒到一起买开发板。 我自己的学习过程 1、 一共24个库,不可能都学,都学也没用。按照我的工作需求必须学的有16个,这16个也不是全学。主要学习来源是各种例程代码、“固件函数库用户手册”和“参考手册”。 具体学习方法是通读不同来源的程序,在程序中找到相关的函数库的应用,然后再阅读相关文档,有条件的实验。对于内容的选择方面,根据入门内容和未来应用,将所涉及的范围精简到最低,但是对所选择的部分的学习则力求明确。以下是我按照自己的需求对程序库函数排列的学习顺序: a) 绝大部分程序都要涉及到的库——flash,lib,nvic,rcc,只学基础的跟最简单应用相关必用的部分,其他部分后期再返回头学。 b) 各种程序通用但不必用的库——exti,MDA,systic,只通读理解其作用。 c) DEMO板拥有的外设库——gpio,usart,编写代码实验。 d) 未来需要用到的外设的库——tim,tim1,adc,i2c,spi,先理解等待有条件后实验。 e) 开发可靠性相关库——bkp,iwdg,wwdg,pwr,参考其他例程的做法。 f) 其他,根据兴趣来学。 2、 阅读flash: 芯片内部存储器flash操作函数 我的理解——对芯片内部flash进行操作的函数,包括读取,状态,擦除,写入等等,可以允许程序去操作flash上的数据。 基础应用1,FLASH时序延迟几个周期,等待总线同步操作。推荐按照单片机系统运行频率,0—24MHz时,取Latency=0;24—48MHz时,取Latency=1;48~72MHz时,取Latency=2。所有程序中必须的 用法:FLASH_SetLatency(FLASH_Latency_2); 位置:RCC初始化子函数里面,时钟起振之后。 基础应用2,开启FLASH预读缓冲功能,加速FLASH的读取。所有程序中必须的 用法:FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); 位置:RCC初始化子函数里面,时钟起振之后。 3、 阅读lib:调试所有外设初始化的函数。 我的理解——不理解,也不需要理解。只要知道所有外设在调试的时候,EWRAM需要从这个函数里面获得调试所需信息的地址或者指针之类的信息。 基础应用1,只有一个函数debug。所有程序中必须的。 用法: #ifdef DEBUG debug(); #endif 位置:main函数开头,声明变量之后。 4、 阅读nvic:系统中断管理。 我的理解——管理系统内部的中断,负责打开和关闭中断。 基础应用1,中断的初始化函数,包括设置中断向量表位置,和开启所需的中断两部分。所有程序中必须的。 用法: void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure;//中断管理恢复默认参数 #ifdef VECT_TAB_RAM //如果C/C++ CompilerPreprocessorDefined symbols中的定义了VECT_TAB_RAM(见程序库更改内容的表格) NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); //则在RAM调试 #else //如果没有定义VECT_TAB_RAM NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);//则在Flash里调试 #endif //结束判断语句 //以下为中断的开启过程,不是所有程序必须的。 //NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC优先级分组,方式。 //注:一共16个优先级,分为抢占式和响应式。两种优先级所占的数量由此代码确定,NVIC_PriorityGroup_x可以是0、1、2、3、4,分别代表抢占优先级有1、2、4、8、16个和响应优先级有16、8、4、2、1个。规定两种优先级的数量后,所有的中断级别必须在其中选择,抢占级别高的会打断其他中断优先执行,而响应级别高的会在其他中断执行完优先执行。 //NVIC_InitStructure.NVIC_IRQChannel = 中断通道名; //开中断,中断名称见函数库 //NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级 //NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级 //NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;//启动此通道的中断 //NVIC_Init(&NVIC_InitStructure); //中断初始化 } 5、 阅读rcc:单片机时钟管理。 我的理解——管理外部、内部和外设的时钟,设置、打开和关闭这些时钟。 基础应用1:时钟的初始化函数过程—— 用法:void RCC_Configuration(void) //时钟初始化函数 { ErrorStatus HSEStartUpStatus; //等待时钟的稳定 RCC_DeInit(); //时钟管理重置 RCC_HSEConfig(RCC_HSE_ON); //打开外部晶振 HSEStartUpStatus = RCC_WaitForHSEStartUp(); //等待外部晶振就绪 if (HSEStartUpStatus == SUCCESS) { FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); //flash读取缓冲,加速 FLASH_SetLatency(FLASH_Latency_2); //flash操作的延时 RCC_HCLKConfig(RCC_SYSCLK_Div1); //AHB使用系统时钟 RCC_PCLK2Config(RCC_HCLK_Div2); //APB2(高速)为HCLK的一半 RCC_PCLK1Config(RCC_HCLK_Div2); //APB1(低速)为HCLK的一半 //注:AHB主要负责外部存储器时钟。PB2负责AD,I/O,高级TIM,串口1。APB1负责DA,USB,SPI,I2C,CAN,串口2345,普通TIM。 RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); //PLLCLK = 8MHz * 9 = 72 MHz RCC_PLLCmd(ENABLE); //启动PLL while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){} //等待PLL启动 RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //将PLL设置为系统时钟源 while (RCC_GetSYSCLKSource() != 0x08){} //等待系统时钟源的启动 } //RCC_AHBPeriphClockCmd(ABP2设备1 | ABP2设备2 |, ENABLE); //启动AHP设备 //RCC_APB2PeriphClockCmd(ABP2设备1 | ABP2设备2 |, ENABLE); //启动ABP2设备 //RCC_APB1PeriphClockCmd(ABP2设备1 | ABP2设备2 |, ENABLE); //启动ABP1设备 } 1、阅读exti:外部设备中断函数 我的理解——外部设备通过引脚给出的硬件中断,也可以产生软件中断,19个上升、下降或都触发。EXTI0~EXTI15连接到管脚,EXTI线16连接到PVD(VDD监视),EXTI线17连接到RTC(闹钟),EXTI线18连接到USB(唤醒)。 基础应用1,设定外部中断初始化函数。按需求,不是必须代码。 用法: void EXTI_Configuration(void) { EXTI_InitTypeDef EXTI_InitStructure; //外部设备中断恢复默认参数 EXTI_InitStructure.EXTI_Line = 通道1|通道2; //设定所需产生外部中断的通道,一共19个。 EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; //产生中断 EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; //上升下降沿都触发 EXTI_InitStructure.EXTI_LineCmd = ENABLE; //启动中断的接收 EXTI_Init(&EXTI_InitStructure); //外部设备中断启动 } 2、阅读dma:通过总线而越过CPU读取外设数据 我的理解——通过DMA应用可以加速单片机外设、存储器之间的数据传输,并在传输期间不影响CPU进行其他事情。这对于入门开发基本功能来说没有太大必要,这个内容先行跳过。 3、阅读systic:系统定时器 我的理解——可以输出和利用系统时钟的计数、状态。 基础应用1,精确计时的延时子函数。推荐使用的代码。 用法: static vu32 TimingDelay;//全局变量声明 void SysTick_Config(void)//systick初始化函数 { SysTick_CounterCmd(SysTick_Counter_Disable);//停止系统定时器 SysTick_ITConfig(DISABLE); //停止systick中断 SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //systick使用HCLK作为时钟源,频率值除以8。 SysTick_SetReload(9000);//重置时间1毫秒(以72MHz为基础计算) SysTick_ITConfig(ENABLE);//开启systic中断 } void Delay (u32 nTime) //延迟一毫秒的函数 { SysTick_CounterCmd(SysTick_Counter_Enable); //systic开始计时 TimingDelay = nTime; //计时长度赋值给递减变量 while(TimingDelay != 0); //检测是否计时完成 SysTick_CounterCmd(SysTick_Counter_Disable); //关闭计数器 SysTick_CounterCmd(SysTick_Counter_Clear); //清除计数值 } void TimingDelay_Decrement(void) //递减变量函数,函数名由“stm32f10x_it.c”中的中断响应函数定义好了。 { if (TimingDelay != 0x00) //检测计数变量是否达到0 { TimingDelay--; //计数变量递减 } } 注:建议熟练后使用,所涉及知识和设备太多,新手出错的可能性比较大。新手可用简化的延时函数代替: void Delay(vu32 nCount)//简单延时函数 { for(; nCount != 0; nCount--);(循环变量递减计数) } 当延时较长,又不需要精确计时的时候可以使用嵌套循环: void Delay(vu32 nCount) //简单的长时间延时函数 {int i; //声明内部递减变量 for(; nCount != 0; nCount--) //递减变量计数 {for (i=0; i<0xffff; i++)} //内部循环递减变量计数 } 4、阅读gpio:I/O设置函数 我的理解——所有输入输出管脚模式设置,可以是上下拉、浮空、开漏、模拟、推挽模式,频率特性为2M,10M,50M。也可以向该管脚直接写入数据和读取数据。 基础应用1,gpio初始化函数。所有程序必须。 用法:void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; //GPIO状态恢复默认参数 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_标号 | GPIO_Pin_标号 ; //管脚位置定义,标号可以是NONE、ALL、0至15。 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;//输出速度2MHz GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入模式 GPIO_Init(GPIOC, &GPIO_InitStructure); //C组GPIO初始化 //注:以上四行代码为一组,每组GPIO属性必须相同,默认的GPIO参数为:ALL,2MHz,FLATING。如果其中任意一行与前一组相应设置相同,那么那一行可以省略,由此推论如果前面已经将此行参数设定为默认参数(包括使用GPIO_InitTypeDef GPIO_InitStructure代码),本组应用也是默认参数的话,那么也可以省略。以下重复这个过程直到所有应用的管脚全部被定义完毕。 …… } 基础应用2,向管脚写入0或1 用法:GPIO_WriteBit(GPIOB, GPIO_Pin_2, (BitAction)0x01);//写入1
|