完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
描述:用ADC连续采集11路模拟信号,并由DMA传输到内存。ADC配置为扫描并且连续转换模式,ADC的时钟配置为12MHZ。在每次转换结束后,由DMA循环将转换的数据传输到内存中。ADC可以连续采集N次求平均值。最后通过串口传输出最后转换的结果。
程序如下: #i nclude "STM32f10x.h" //这个头文件包括STM32F10x所有外围寄存器、位、内存映射的定义 #i nclude "eval.h" //头文件(包括串口、按键、LED的函数声明) #i nclude "SystickDelay.h" #i nclude "UART_INTERFACE.h" #i nclude #define N 50 //每通道采50次 #define M 12 //为12个通道 vu16 AD_Value[N][M]; //用来存放ADC转换结果,也是DMA的目标地址 vu16 After_filter[M]; //用来存放求平均值之后的结果 int i; void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //因为USART1管脚是以复用的形式接到GPIO口上的,所以使用复用推挽式输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); //PA0/1/2 作为模拟通道输入引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0| GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚 GPIO_Init(GPIOA, &GPIO_InitStructure); //PB0/1 作为模拟通道输入引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚 GPIO_Init(GPIOB, &GPIO_InitStructure); //PC0/1/2/3/4/5 作为模拟通道输入引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚 GPIO_Init(GPIOC, &GPIO_InitStructure); } } void RCC_Configuration(void) { ErrorStatus HSEStartUpStatus; RCC_DeInit(); //RCC 系统复位 RCC_HSEConfig(RCC_HSE_ON); //开启HSE HSEStartUpStatus = RCC_WaitForHSEStartUp(); //等待HSE准备好 if(HSEStartUpStatus == SUCCESS) { FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); //Enable Prefetch Buffer FLASH_SetLatency(FLASH_Latency_2); //Set 2 Latency cycles RCC_HCLKConfig(RCC_SYSCLK_Div1); //AHB clock = SYSCLK RCC_PCLK2Config(RCC_HCLK_Div1); //APB2 clock = HCLK RCC_PCLK1Config(RCC_HCLK_Div2); //APB1 clock = HCLK/2 RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_6); //PLLCLK = 12MHz * 6 = 72 MHz RCC_PLLCmd(ENABLE); //Enable PLL while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); //Wait till PLL is ready RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //Select PLL as system clock source while(RCC_GetSYSCLKSource() != 0x08); //Wait till PLL is used as system clock source RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC |RCC_APB2Periph_ADC1 | RCC_APB2Periph_AFIO |RCC_APB2Periph_USART1, ENABLE ); //使能ADC1通道时钟,各个管脚时钟 RCC_ADCCLKConfig(RCC_PCLK2_Div6); //72M/6=12,ADC最大时间不能超过14M RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //使能DMA传输 } } void ADC1_Configuration(void) { ADC_InitTypeDef ADC_InitStructure; ADC_DeInit(ADC1); //将外设 ADC1 的全部寄存器重设为缺省值 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC工作模式:ADC1和ADC2工作在独立模式 ADC_InitStructure.ADC_ScanConvMode =ENABLE; //模数转换工作在扫描模式 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //模数转换工作在连续转换模式 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //外部触发转换关闭 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC数据右对齐 ADC_InitStructure.ADC_NbrOfChannel = M; //顺序进行规则转换的ADC通道的数目 ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器 //设置指定ADC的规则组通道,设置它们的转化顺序和采样时间 //ADC1,ADC通道x,规则采样顺序值为y,采样时间为239.5周期 ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_239Cycles5 ); ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_239Cycles5 ); ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_239Cycles5 ); ADC_RegularChannelConfig(ADC1, ADC_Channel_3, 4, ADC_SampleTime_239Cycles5 ); ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 5, ADC_SampleTime_239Cycles5 ); ADC_RegularChannelConfig(ADC1, ADC_Channel_9, 6, ADC_SampleTime_239Cycles5 ); ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 7, ADC_SampleTime_239Cycles5 ); ADC_RegularChannelConfig(ADC1, ADC_Channel_11, 8, ADC_SampleTime_239Cycles5 ); ADC_RegularChannelConfig(ADC1, ADC_Channel_12, 9, ADC_SampleTime_239Cycles5 ); ADC_RegularChannelConfig(ADC1, ADC_Channel_13, 10, ADC_SampleTime_239Cycles5 ); ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 11, ADC_SampleTime_239Cycles5 ); ADC_RegularChannelConfig(ADC1, ADC_Channel_15, 12, ADC_SampleTime_239Cycles5 ); // 开启ADC的DMA支持(要实现DMA功能,还需独立配置DMA通道等参数) ADC_DMACmd(ADC1, ENABLE); ADC_Cmd(ADC1, ENABLE); //使能指定的ADC1 ADC_ResetCalibration(ADC1); //复位指定的ADC1的校准寄存器 while(ADC_GetResetCalibrationStatus(ADC1)); //获取ADC1复位校准寄存器的状态,设置状态则等待 ADC_StartCalibration(ADC1); //开始指定ADC1的校准状态 while(ADC_GetCalibrationStatus(ADC1)); //获取指定ADC1的校准程序,设置状态则等待 } void DMA_Configuration(void) { DMA_InitTypeDef DMA_InitStructure; DMA_DeInit(DMA1_Channel1); //将DMA的通道1寄存器重设为缺省值 DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)&ADC1->DR; //DMA外设ADC基地址 DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&AD_Value; //DMA内存基地址 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //内存作为数据传输的目的地 DMA_InitStructure.DMA_BufferSize = N*M; //DMA通道的DMA缓存的大小 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //外设地址寄存器不变 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存地址寄存器递增 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; //数据宽度为16位 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; //数据宽度为16位 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //工作在循环缓存模式 DMA_InitStructure.DMA_Priority = DMA_Priority_High; //DMA通道 x拥有高优先级 DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; //DMA通道x没有设置为内存到内存传输 DMA_Init(DMA1_Channel1, &DMA_InitStructure); //根据DMA_InitStruct中指定的参数初始化DMA的通道 } //配置所有外设 void Init_All_Periph(void) { RCC_Configuration(); GPIO_Configuration(); ADC1_Configuration(); DMA_Configuration(); //USART1_Configuration(); USART_Configuration(9600); } u16 GetVolt(u16 advalue) { return (u16)(advalue * 330 / 4096); //求的结果扩大了100倍,方便下面求出小数 } void filter(void) { int sum = 0; u8 count; for(i=0;i<12;i++) { for ( count=0;count { sum += AD_Value[count]; } After_filter=sum/N; sum=0; } } int main(void) { u16 value[M]; init_All_Periph(); SysTick_Initaize(); ADC_SoftwareStartConvCmd(ADC1, ENABLE); DMA_Cmd(DMA1_Channel1, ENABLE); //启动DMA通道 while(1) { while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);//等待传输完成否则第一位数据容易丢失 filter(); for(i=0;i<12;i++) { value= GetVolt(After_filter); printf("value[%d]:t%d.%dvn",i,value/100,value0) ; delay_ms(100); } } } 总结 该程序中的两个宏定义,M和N,分别代表有多少个通道,每个通道转换多少次,可以修改其值。 曾出现的问题:配置时钟时要知道外部晶振是多少,以便准确配置时钟。将转换值由二进制转换为十进制时,要先扩大100倍,方便显示小数。最后串口输出时在 printf语句之前加这句代码,防止输出的第一位数据丢失:while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET); |
|
相关推荐
|
|
大哥,能不能给个库啊,
|
|
|
|
|
|
1187 浏览 0 评论
AD7686芯片不传输数据给STM32,但是手按住就会有数据。
1122 浏览 2 评论
2223 浏览 0 评论
如何解决MPU-9250与STM32通讯时,出现HAL_ERROR = 0x01U
1311 浏览 1 评论
hal库中i2c卡死在HAL_I2C_Master_Transmit
1735 浏览 1 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-11-27 09:17 , Processed in 0.556775 second(s), Total 69, Slave 51 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号