由于定子绕组的反电动势与电机的转速成正比,所以电机在静止时反电动势为零或低速时反电动势很小,此时无法根据反电动势信号确定转子磁极的位置,因此反电动势法需要采用特殊起动技术,从静止开始加速,直至转速足够大,通过反电势能检测到过零时,再切换至无刷直流电机运行状态。这个过程称为“三段式”起动,主要包括转子预定位、加速和运行状态切换三个阶段。这样既可以使电机转向可控,又可以保证电机达到一定转速后再进行切换,保证了起动的可靠性。 下面对“三段式”起动技术进行详细的分析。 v 电机转子预定位 若要保证无刷直流电机能够正常起动,首先要确定转子在静止时的位置。 在小型轻载条件下,对于具有梯形反电势波形的无刷直流电机来说,一般采用磁制动转子定位方式。系统起动时,任意给定一组触发脉冲,在气隙中形成一个幅值恒定、方向不变的磁通,只要保证其幅值足够大,那么这一磁通就能在一定时间内将电机转子强行定位这个方向上。 在应用中,可以在任意一组绕组上通电一定时间,其中预定位的PWM占空比和预定位时间的长短设定值可由具体电机特性和负载决定,在实际应用中调试而得。在预定位成功后,转子在起动前可达到预定的位置,为电机起动做好准备。 v 电机的外同步加速 确定了电机转子的初始位置后,由于此时定子绕组中的反电动势仍为零,所以必须人为的改变电机的外施电压和换相信号,使电机由静止逐步加速运动,这一过程称为外同步加速。对于不同的外施电压调整方法和换相信号调整方法,外同步加速可以划分为三类: 换相信号频率不变,逐步增大外施电压使电机加速,称为恒频升压法。 保持外施电压不变,逐渐增高换相信号的频率,使电机逐步加速,称为恒压升频法。 在逐步增大外施电压的同时,增高换相的频率,称为升频升压法。 各个方法都有其优点和缺点。如升频升压法是人为地给电机施加一个由低频到高频不断加速的他控同步切换信号,而且电压也在不断地增加。通过调整电机换相频率,即可调整电机起动的速度。调整方法比较简单。但是这个过程比较难实现,切换信号的频率的选择要根据电机的极对数和其它参数来确定,太低电机无法加速,太高电机转速达不到会有噪声甚至无法启动,算法比较困难。 无论哪种方法,该过程都是在未检测到反电动势信号时进行,因此对于控制系统来说,此段电机控制是盲区。参数在调试好的时候,可以快速切换至正常运行状态;而参数不理想时,电流可能不稳甚至电机会抖动。因此,在应用中,应根据电机及负载特性设定合理的升速曲线,并在尽可能短的时间内完成切换。 v 电机运行状态的转换 当电机通过外同步加速到一定的转速后,反电势信号可以准确检测时,即可由外同步向自同步切换。可以通过试验观察反电势信号能够被准确检测的转速,在进行切换时有两种方法。一是测速模块可以测出电机的转速,当达到这一转速时即可进行切换。另一种,通过试验检测出达到预定切换转速的时间,通过软件定时器设置切换时间这一时间时即可进行切换。 这一步是关键也是比较难实现的一步,有时软件或者硬件设计的不合理都可能导致起动失败。通常是采用估算的方式来选择切换速度。 通过上面的分析可知,无位置传感器无刷直流电机控制系统的难点就是加速及切换阶段,当电机顺利起动后,就可以对电机调速操作。其中,无位置传感器无刷直流电机和有位置传感器电机调速原理一致。但,由于无感三段式起动过程,转子位置检测无效,因此,对电机进行的速度PID 闭环控制,需在电机起动顺利完成后进行。
3
|
|
|
|
楼主总结的很好 谢谢分享
|
|
|
|
|
电机在AB切换到AC的过程,需不需要检测C端有没有过零
|
|
|
|
|
外同步加速三种方法的恒频升压法不太理解,无刷电机的转速应该是跟定子换向速度一致的吧,加速应该是逐渐加大频率,恒频升压怎么能做到加速呢,定子旋转磁场转速远大于转子转速怎么能使电机转起来呢?
|
|
|
|
|