本篇源自:优秀创作者 lulugl
本文将介绍基于米尔电子MYD-LR3576开发板(米尔基于瑞芯微 RK3576开发板)的人脸疲劳检测方案测试。 米尔基于RK3576核心板/开发板
【前言】 人脸疲劳检测:一种通过分析人脸特征来判断一个人是否处于疲劳状态的技术。其原理主要基于计算机视觉和机器学习方法。当人疲劳时,面部会出现一些特征变化,如眼睛闭合程度增加、眨眼频率变慢、打哈欠、头部姿态改变等。
例如,通过检测眼睛的状态来判断疲劳程度是一个关键部分。正常情况下,人的眨眼频率相对稳定,而当疲劳时,眨眼频率会降低,并且每次眨眼时眼睛闭合的时间可能会延长。同时,头部可能会不自觉地下垂或者摇晃,这些特征都可以作为疲劳检测的依据。米尔MYC-LR3576采用8核CPU+搭载6 TOPS的NPU加速器,3D GPU,能够非常轻松的实现这个功能,下面就如何实现这一功能分享如下: 【硬件】 1、米尔MYC-LR3576开发板
2、USB摄像头 【软件】 1、v4l2
2、openCV
3、dlib库:dlib 是一个现代化的 C++ 工具包,它包含了许多用于机器学习、图像处理、数值计算等多种任务的算法和工具。它的设计目标是提供高性能、易于使用的库,并且在开源社区中被广泛应用。 【实现步骤】 1、安装python-opencv
2、安装dlib库
3、安装v4l2库 【代码实现】 1、引入cv2、dlib以及线程等:
- import cv2
- import dlib
- import numpy as np
- import time
- from concurrent.futures import ThreadPoolExecutor
- import threading
复制代码
2、初始化dlib的面部检测器和特征点预测器
- detector = dlib.get_frontal_face_detector()
- predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
复制代码
3、定义计算眼睛纵横比的函数
- def eye_aspect_ratio(eye):
- A = np.linalg.norm(np.array(eye[1]) - np.array(eye[5]))
- B = np.linalg.norm(np.array(eye[2]) - np.array(eye[4]))
- C = np.linalg.norm(np.array(eye[0]) - np.array(eye[3]))
- ear = (A + B) / (2.0 * C)
- return ear
复制代码
4、定义计算头部姿势的函数
- def get_head_pose(shape):
- # 定义面部特征点的三维坐标
- object_points = np.array([
- (0.0, 0.0, 0.0), # 鼻尖
- (0.0, -330.0, -65.0), # 下巴
- (-225.0, 170.0, -135.0), # 左眼左眼角
- (225.0, 170.0, -135.0), # 右眼右眼角
- (-150.0, -150.0, -125.0), # 左嘴角
- (150.0, -150.0, -125.0) # 右嘴角
- ], dtype=np.float32)
- image_pts = np.float32([shape[i] for i in [30, 8, 36, 45, 48, 54]])
- size = frame.shape
- focal_length = size[1]
- center = (size[1] // 2, size[0] // 2)
- camera_matrix = np.array(
- [[focal_length, 0, center[0]],
- [0, focal_length, center[1]],
- [0, 0, 1]], dtype="double"
- )
- dist_coeffs = np.zeros((4, 1))
- (success, rotation_vector, translation_vector) = cv2.solvePnP(
- object_points, image_pts, camera_matrix, dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE
- )
- rmat, _ = cv2.Rodrigues(rotation_vector)
- angles, _, _, _, _, _ = cv2.RQDecomp3x3(rmat)
- return angles
复制代码
5、定义眼睛纵横比阈值和连续帧数阈值
- EYE_AR_THRESH = 0.3
- EYE_AR_CONSEC_FRAMES = 48
复制代码
6、打开摄像头
我们先使用v4l2-ctl --list-devices来例出接在开发板上的列表信息:
- USB Camera: USB Camera (usb-xhci-hcd.0.auto-1.2):
- /dev/video60
- /dev/video61
- /dev/media7
复制代码
在代码中填入60为摄像头的编号:
- cap = cv2.VideoCapture(60)
- cap.set(cv2.CAP_PROP_FRAME_WIDTH, 480) # 降低分辨率
- cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 320)
复制代码
7、创建多线程处理函数,实现采集与分析分离:
- # 多线程处理函数
- def process_frame(frame):
- global COUNTER, TOTAL
- gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
- faces = detector(gray, 0) # 第二个参数为0,表示不使用upsampling
- for face in faces:
- landmarks = predictor(gray, face)
- shape = [(landmarks.part(i).x, landmarks.part(i).y) for i in range(68)]
-
- left_eye = shape[36:42]
- right_eye = shape[42:48]
- left_ear = eye_aspect_ratio(left_eye)
- right_ear = eye_aspect_ratio(right_eye)
- ear = (left_ear + right_ear) / 2.0
- if ear < EYE_AR_THRESH:
- with lock:
- COUNTER += 1
- else:
- with lock:
- if COUNTER >= EYE_AR_CONSEC_FRAMES:
- TOTAL += 1
- COUNTER = 0
- # 绘制68个特征点
- for n in range(0, 68):
- x, y = shape[n]
- cv2.circle(frame, (x, y), 2, (0, 255, 0), -1)
- cv2.putText(frame, f"Eye AR: {ear:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- cv2.putText(frame, f"Blink Count: {TOTAL}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- # 计算头部姿势
- angles = get_head_pose(shape)
- pitch, yaw, roll = angles
- cv2.putText(frame, f"Pitch: {pitch:.2f}", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- cv2.putText(frame, f"Yaw: {yaw:.2f}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- cv2.putText(frame, f"Roll: {roll:.2f}", (10, 180), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- # 判断疲劳状态
- if COUNTER >= EYE_AR_CONSEC_FRAMES or abs(pitch) > 30 or abs(yaw) > 30 or abs(roll) > 30:
- cv2.putText(frame, "Fatigue Detected!", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- return frame
复制代码
8、创建图像显示线程:
- with ThreadPoolExecutor(max_workers=2) as executor:
- future_to_frame = {}
- while True:
- ret, frame = cap.read()
- if not ret:
- break
- # 提交当前帧到线程池
- future = executor.submit(process_frame, frame.copy())
- future_to_frame[future] = frame
- # 获取已完成的任务结果
- for future in list(future_to_frame.keys()):
- if future.done():
- processed_frame = future.result()
- cv2.imshow("Frame", processed_frame)
- del future_to_frame[future]
- break
- # 计算帧数
- fps_counter += 1
- elapsed_time = time.time() - start_time
- if elapsed_time > 1.0:
- fps = fps_counter / elapsed_time
- fps_counter = 0
- start_time = time.time()
- cv2.putText(processed_frame, f"FPS: {fps:.2f}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
- if cv2.waitKey(1) & 0xFF == ord('q'):
复制代码
实现效果:
根据检测的结果,我们就可以来实现疲劳提醒等等的功能。
整体代码如下:
- import cv2
- import dlib
- import numpy as np
- import time
- from concurrent.futures import ThreadPoolExecutor
- import threading
- # 初始化dlib的面部检测器和特征点预测器
- detector = dlib.get_frontal_face_detector()
- predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
- # 修改字体大小
- font_scale = 0.5 # 原来的字体大小是0.7,现在改为0.5
- # 定义计算眼睛纵横比的函数
- def eye_aspect_ratio(eye):
- A = np.linalg.norm(np.array(eye[1]) - np.array(eye[5]))
- B = np.linalg.norm(np.array(eye[2]) - np.array(eye[4]))
- C = np.linalg.norm(np.array(eye[0]) - np.array(eye[3]))
- ear = (A + B) / (2.0 * C)
- return ear
- # 定义计算头部姿势的函数
- def get_head_pose(shape):
- # 定义面部特征点的三维坐标
- object_points = np.array([
- (0.0, 0.0, 0.0), # 鼻尖
- (0.0, -330.0, -65.0), # 下巴
- (-225.0, 170.0, -135.0), # 左眼左眼角
- (225.0, 170.0, -135.0), # 右眼右眼角
- (-150.0, -150.0, -125.0), # 左嘴角
- (150.0, -150.0, -125.0) # 右嘴角
- ], dtype=np.float32)
- image_pts = np.float32([shape[i] for i in [30, 8, 36, 45, 48, 54]])
- size = frame.shape
- focal_length = size[1]
- center = (size[1] // 2, size[0] // 2)
- camera_matrix = np.array(
- [[focal_length, 0, center[0]],
- [0, focal_length, center[1]],
- [0, 0, 1]], dtype="double"
- )
- dist_coeffs = np.zeros((4, 1))
- (success, rotation_vector, translation_vector) = cv2.solvePnP(
- object_points, image_pts, camera_matrix, dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE
- )
- rmat, _ = cv2.Rodrigues(rotation_vector)
- angles, _, _, _, _, _ = cv2.RQDecomp3x3(rmat)
- return angles
- # 定义眼睛纵横比阈值和连续帧数阈值
- EYE_AR_THRESH = 0.3
- EYE_AR_CONSEC_FRAMES = 48
- # 初始化计数器
- COUNTER = 0
- TOTAL = 0
- # 创建锁对象
- lock = threading.Lock()
- # 打开摄像头
- cap = cv2.VideoCapture(60)
- cap.set(cv2.CAP_PROP_FRAME_WIDTH, 480) # 降低分辨率
- cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 320)
- # 初始化帧计数器和时间戳
- fps_counter = 0
- start_time = time.time()
- # 多线程处理函数
- def process_frame(frame):
- global COUNTER, TOTAL
- gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
- faces = detector(gray, 0) # 第二个参数为0,表示不使用upsampling
- for face in faces:
- landmarks = predictor(gray, face)
- shape = [(landmarks.part(i).x, landmarks.part(i).y) for i in range(68)]
-
- left_eye = shape[36:42]
- right_eye = shape[42:48]
- left_ear = eye_aspect_ratio(left_eye)
- right_ear = eye_aspect_ratio(right_eye)
- ear = (left_ear + right_ear) / 2.0
- if ear < EYE_AR_THRESH:
- with lock:
- COUNTER += 1
- else:
- with lock:
- if COUNTER >= EYE_AR_CONSEC_FRAMES:
- TOTAL += 1
- COUNTER = 0
- # 绘制68个特征点
- for n in range(0, 68):
- x, y = shape[n]
- cv2.circle(frame, (x, y), 2, (0, 255, 0), -1)
- cv2.putText(frame, f"Eye AR: {ear:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- cv2.putText(frame, f"Blink Count: {TOTAL}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- # 计算头部姿势
- angles = get_head_pose(shape)
- pitch, yaw, roll = angles
- cv2.putText(frame, f"Pitch: {pitch:.2f}", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- cv2.putText(frame, f"Yaw: {yaw:.2f}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- cv2.putText(frame, f"Roll: {roll:.2f}", (10, 180), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- # 判断疲劳状态
- if COUNTER >= EYE_AR_CONSEC_FRAMES or abs(pitch) > 30 or abs(yaw) > 30 or abs(roll) > 30:
- cv2.putText(frame, "Fatigue Detected!", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), 2)
- return frame
- with ThreadPoolExecutor(max_workers=2) as executor:
- future_to_frame = {}
- while True:
- ret, frame = cap.read()
- if not ret:
- break
- # 提交当前帧到线程池
- future = executor.submit(process_frame, frame.copy())
- future_to_frame[future] = frame
- # 获取已完成的任务结果
- for future in list(future_to_frame.keys()):
- if future.done():
- processed_frame = future.result()
- cv2.imshow("Frame", processed_frame)
- del future_to_frame[future]
- break
- # 计算帧数
- fps_counter += 1
- elapsed_time = time.time() - start_time
- if elapsed_time > 1.0:
- fps = fps_counter / elapsed_time
- fps_counter = 0
- start_time = time.time()
- cv2.putText(processed_frame, f"FPS: {fps:.2f}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
- if cv2.waitKey(1) & 0xFF == ord('q'):
- break
- # 释放摄像头并关闭所有窗口
- cap.release()
- cv2.destroyAllWindows()
复制代码
【总结】 【米尔MYC-LR3576核心板及开发板】
这块开发板性能强大,能轻松实现对人脸的疲劳检测,通过计算结果后进入非常多的工业、人工智能等等的实用功能。
|