完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
Tengine on rk3399
Tengine Tengine 是 OPEN AI LAB 一款轻量级神经网络推理引擎,它针对 Arm 嵌入式平台进行了专门优化,对 Android、Linux 系统都提供了很好的支持。 而且更加难能可贵的是 Tengine 并不依赖于专用 AI 芯片(即 Tengine 可以利用 GPU、NPU 这些具有专门 AI 加速功能的模块进行 AI 运算,也可以利用通用的 CPU 进行 AI 运算),很多 Arm 平台都可以通过 Tengine 框架对算力进行深度挖掘,从而高效的运行一些 AI 应用。 本文就是想描述如何在 RK3399 这一 Arm64 平台上搭建 Tengine AI 推理框架,并运行图像识别相关应用。 这里用的 RK3399 平台是一块基于 RK3399 的 Leez P710 开发板,我在上面移植了基于 Armbian 的 Debian 10 系统,运行的 u-boot 和 linux kernel 都是mainline的。具体过程可以参考这篇文章:在 RK3399 上部署最新的 Linux 5.4 和 U-Boot v2020 .01 。 编译 Tengine OPEN AI LAB 在 Github 上提供了开源的 Tengine 版本,并提供了比较详细的参考文档,所以可以直接下载源码,根据文档进行编译。 得益于 RK3399 强大的性能,我们可以直接在 RK3399 上下载代码,进行编译,免去交叉编译的诸多不便。、
编译并运行测试 Demo Tengine 开放的源码里面还带了几个不错的 图像识别相关的测试 Demo,用来测试和进行 AI 相关的基础学习都很不错。 这些 Demo 的源码在 examples 目录下,在编译之前我们需要修改一个编译脚本 linux_build.sh, 即根据实际情况,正确设置 Tengine 的所在路径,比如我下载编译的 Tengine 代码在 /root/rockdev/tengine 目录下: 然后在 examples 目录下执行如下命令: mkdir build cd build/ ../linux_build.sh make 编译完成,主要有 faster_rcnn 、lighten_cnn、 mobilenet_ssd、 mtcnn 、ssd、 yolov2、 YuFaceDetectNet 这几个测试 Demo。 |
|
|
|
你正在撰写答案
如果你是对答案或其他答案精选点评或询问,请使用“评论”功能。
基于米尔瑞芯微RK3576核心板/开发板的人脸疲劳检测应用方案
498 浏览 0 评论
768 浏览 1 评论
667 浏览 1 评论
1893 浏览 1 评论
3138 浏览 1 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-22 01:44 , Processed in 0.769475 second(s), Total 71, Slave 54 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号