项目中往往需要调试信息,调试stm32的时候,需要标准库里面的printf函数。在keil MDK环境下重定向printf与keil C51不同,由于本人使用了STM32CubeMX生成工程模板,HAL_USART_Transmit函数即是模板里串口输出的函数。由于printf最终是调用fputc输出数据,fputc是一个弱引用(weak)函数,覆写即可重定向printf。
/* USER CODE BEGIN Includes */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include
/* USER CODE END Includes */
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
#ifdef __GNUC__
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif
PUTCHAR_PROTOTYPE
{
HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);
return ch;
}
/* USER CODE END PV */
华丽的分界线
例子:
硬件平台:stm32F407Zet6
软件平台:stm32cubeMX 4.7+MDK5.14
电路连接:PA9,PA10
第一步、通过Stm32CubeMX图形界面创建Keil工程
- 需要配置的地方是:
- 第二章配置图:
- 在这里可以修改串口工作的一下参数,软件就可以生成配置好的工程,不需要亲自去配置这些了。
第二步。打开工程,编写代码,验证
/* USER CODE BEGIN PV */#include "stdio.h"#ifdef __GNUC__#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)#endif /* __GNUC__ */PUTCHAR_PROTOTYPE{ HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF); return ch;}/* USER CODE END PV */1234567891011121314这段程序为了可以使用printf()函数,对字符输出函数进行了重定向,这样我们就可以在程序中使用printf函数进行输出了,这里使用的是查询发送方式,有超时控制的。接下来来看中断方式的。
/** * @brief This function handles UART interrupt request. * @param huart: pointer to a UART_HandleTypeDef structure that contains * the configuration information for the specified UART module. * @retval None */void HAL_UART_IRQHandler(UART_HandleTypeDef *huart){ uint32_t tmp1 = 0, tmp2 = 0; tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_PE); tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_PE); /* UART parity error interrupt occurred ------------------------------------*/ if((tmp1 != RESET) && (tmp2 != RESET)) { __HAL_UART_CLEAR_PEFLAG(huart); huart->ErrorCode |= HAL_UART_ERROR_PE; } tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_FE); tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR); /* UART frame error interrupt occurred -------------------------------------*/ if((tmp1 != RESET) && (tmp2 != RESET)) { __HAL_UART_CLEAR_FEFLAG(huart); huart->ErrorCode |= HAL_UART_ERROR_FE; } tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_NE); tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR); /* UART noise error interrupt occurred -------------------------------------*/ if((tmp1 != RESET) && (tmp2 != RESET)) { __HAL_UART_CLEAR_NEFLAG(huart); huart->ErrorCode |= HAL_UART_ERROR_NE; } tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_ORE); tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR); /* UART Over-Run interrupt occurred ----------------------------------------*/ if((tmp1 != RESET) && (tmp2 != RESET)) { __HAL_UART_CLEAR_OREFLAG(huart); huart->ErrorCode |= HAL_UART_ERROR_ORE; } tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE); tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_RXNE); /* UART in mode Receiver ---------------------------------------------------*/ if((tmp1 != RESET) && (tmp2 != RESET)) { UART_Receive_IT(huart); } tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_TXE); tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_TXE); /* UART in mode Transmitter ------------------------------------------------*/ if((tmp1 != RESET) && (tmp2 != RESET)) { UART_Transmit_IT(huart); } tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_TC); tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC); /* UART in mode Transmitter end --------------------------------------------*/ if((tmp1 != RESET) && (tmp2 != RESET)) { UART_EndTransmit_IT(huart); } if(huart->ErrorCode != HAL_UART_ERROR_NONE) { /* Set the UART state ready to be able to start again the process */ huart->State = HAL_UART_STATE_READY; HAL_UART_ErrorCallback(huart); } }1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283这个函数中查询了所有可能发生的中断。用到的中断是发送完成中断,就找到了UART_EndTransmit_IT(huart);再跳进去看看:
/** * @brief Wraps up transmission in non blocking mode. * @param huart: pointer to a UART_HandleTypeDef structure that contains * the configuration information for the specified UART module. * @retval HAL status */static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart){ /* Disable the UART Transmit Complete Interrupt */ __HAL_UART_DISABLE_IT(huart, UART_IT_TC); /* Check if a receive process is ongoing or not */ if(huart->State == HAL_UART_STATE_BUSY_TX_RX) { huart->State = HAL_UART_STATE_BUSY_RX; } else { /* Disable the UART Parity Error Interrupt */ __HAL_UART_DISABLE_IT(huart, UART_IT_PE); /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ __HAL_UART_DISABLE_IT(huart, UART_IT_ERR); huart->State = HAL_UART_STATE_READY; } HAL_UART_TxCpltCallback(huart); return HAL_OK;}1234567891011121314151617181920212223242526272829303132这个函数在确定中断发生了之后调用了,HAL_UART_TxCpltCallback(huart);从函数名上可以看出,这是个回调函数,就是留给上层来实现的函数,由这个函数的实现不同,来实现不同的功能。这里来实现这个函数,让它在中断发生的时候吧USART1Ready置为SET;代码修改如下:
/* USER CODE BEGIN PV */#include "stdio.h"#ifdef __GNUC__#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)#endif /* __GNUC__ */__IO ITStatus USART1Ready = RESET; PUTCHAR_PROTOTYPE{ HAL_UART_Transmit_IT(&huart1 , (uint8_t *)&ch, 1); while (USART1Ready != SET) { } USART1Ready = RESET; return ch;} /* USER CODE END PV */12345678910111213141516171819202122这是重定向函数的修改,启动发送之后,等待发送完成。重新实现的回调函数如下图所示:
/** * @brief Tx Transfer completed callbacks. * @param huart: pointer to a UART_HandleTypeDef structure that contains * the configuration information for the specified UART module. * @retval None */void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart){ /* NOTE: This function Should not be modified, when the callback is needed, the HAL_UART_TxCpltCallback could be implemented in the user file */ USART1Ready = SET;}
|
|
2021-12-1 11:40:58
评论
举报
|
|
|