完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
STM32F107+LWIP+FreeRTOS
最近在学习LWIP的协议栈,想移植到FreeRTOS上 网上找资料,原子的用处是F4的平台,LWIP1.4.1的版本,使用的是UCOS的,野火使用的是LWIP2.0.1的版本,操作系统使用的是FreeRTOS的的,但是用的是HAL库,不太适合我这种初学的所以只有。 本人使用:STM32F107 + LWIP1.4.1 + FreeRTOS9.0.0 先来了解下LWIP 本文使用的网卡PHY芯片型号是DP83848,工作在MII接口模式,频率是25MHz。 现在的LwIP版本已经发展到了lwIP 2.0.3 代码版。但实际具体的后发现1.4.1 对比了一些不同的衣服,包括但全部: 1、IPv4 和 IPv6 的实现代码不混合起来,而 1.4.1 是单独的,通过整体可以单独组装。 2、增加了一些经常使用的网络组件或应用程序,包括基于tcp 会被实现的MQTT协议。自己也曾移植过lwIP 2.0.2,发现IPv6实现编译,并且会产生一些函数调用问题,在我们的调用中库中以及mdk的库中不支持相关函数,另外,本项目用的芯片不支持IPv6,而相关代码会增加ROM空间的占用,没有必要,而LwIP2.0.2以上版本所带的MQTT协议实现也可以移植到LwIP-1.4.1上使用。 所以还是选择LwIP的1.4.1这个经典版本。但后来的MQTT协议实现没有用LwIP2.0.2版本的实现代码,比较接近paho.mqtt.embedded-c版的一个 的contrib-1.4.1里面含有官方的移植示例,有窗户和UNIX操作系统下的移植,和某些非操作系统的移植。 在本项目的移植中需要用到一些头文件,可以在contrib- 1.41中找到。无操作系统的可以移植参考原子的 我是用的PHY芯片的83848,用的是RMII的模式工作。 有操作系统的 先移植来看看添加的文件 需要修改的文件 修改sys_arch.c文件 #include “lwip/debug.h” #include “lwip/def.h” #include “lwip/sys.h” #include “lwip/mem.h” #include “lwip/mem.h” #include “arch/sys_arch.h” #define SYS_ARCH_BLOCKING_TICKTIMEOUT ((portTickType)10000) /* This is the number of threads that can be started with sys_thread_new() */ #define SYS_THREAD_MAX 6 /* Structure associating a thread to a struct sys_timeouts */ /* 将线程与结构sys_timeouts关联的结构 */ struct TimeoutlistPerThread { sys_thread_t pid; /* The thread id */ }; /* Thread & struct sys_timeouts association statically allocated per thread. Note: SYS_THREAD_MAX is the max number of thread created by sys_thread_new() that can run simultaneously; it is defined in conf_lwip_threads.h. */ static struct TimeoutlistPerThread Threads_TimeoutsList[SYS_THREAD_MAX]; /* Number of active threads. */ static u16_t NbActiveThreads = 0; /** * brief Initialize the sys_arch layer. */ void sys_init(void) { int i; /* Initialize the the per-thread sys_timeouts structures make sure there are no valid pids in the list */ for (i = 0; i 《 SYS_THREAD_MAX; i++) { Threads_TimeoutsList[i].pid = 0; } /* Keep track of how many threads have been created */ NbActiveThreads = 0; } /** * brief Creates and returns a new semaphore. * * param sem Pointer to the semaphore. * param count Initial state of the semaphore. * * return ERR_OK for OK, other value indicates error. */ err_t sys_sem_new(sys_sem_t *sem, u8_t count) { err_t err_sem = ERR_MEM; /* Sanity check */ if (sem != NULL) { portENTER_CRITICAL(); vSemaphoreCreateBinary( *sem ); if (*sem != SYS_SEM_NULL) { #if SYS_STATS lwip_stats.sys.sem.used++; if (lwip_stats.sys.sem.used 》 lwip_stats.sys.sem.max) { lwip_stats.sys.sem.max = lwip_stats.sys.sem.used; } #endif /* SYS_STATS */ if (0 == count) { /* Means we want the sem to be unavailable at init state. */ xSemaphoreTake( *sem, 1); } err_sem = ERR_OK; } portEXIT_CRITICAL(); } return err_sem; } /** * brief Frees a semaphore created by sys_sem_new. * * param sem Pointer to the semaphore. */ void sys_sem_free(sys_sem_t *sem) { /* Sanity check */ if (sem != NULL) { if (SYS_SEM_NULL != *sem) { #if SYS_STATS lwip_stats.sys.sem.used--; #endif /* SYS_STATS */ vQueueDelete( *sem ); } } } /** * brief Signals (or releases) a semaphore. * * param sem Pointer to the semaphore. */ void sys_sem_signal(sys_sem_t *sem) { /* Sanity check */ if (sem != NULL) { xSemaphoreGive( *sem ); } } /** * brief Blocks the thread while waiting for the semaphore to be signaled. * Note that there is another function sys_sem_wait in sys.c, but it is a wrapper * for the sys_arch_sem_wait function. Please note that it is important for the * semaphores to return an accurate count of elapsed milliseconds, since they are * used to schedule timers in lwIP. * * param sem Pointer to the semaphore. * param timeout The timeout parameter specifies how many milliseconds the * function should block before returning; if the function times out, it should * return SYS_ARCH_TIMEOUT. If timeout=0, then the function should block * indefinitely. If the function acquires the semaphore, it should return how * many milliseconds expired while waiting for the semaphore. * * return SYS_ARCH_TIMEOUT if times out, ERR_MEM for semaphore erro otherwise * return the milliseconds expired while waiting for the semaphore. */ u32_t sys_arch_sem_wait(sys_sem_t *sem, u32_t timeout) { portTickType TickStart; portTickType TickStop; /* Express the timeout in OS tick. */ portTickType TickElapsed = (portTickType)(timeout / portTICK_RATE_MS); /* Sanity check */ if (sem != NULL) { if (timeout && !TickElapsed) { TickElapsed = 1; /* Wait at least one tick */ } if (0 == TickElapsed) { TickStart = xTaskGetTickCount(); /* If timeout=0, then the function should block indefinitely */ while (pdFALSE == xSemaphoreTake( *sem, SYS_ARCH_BLOCKING_TICKTIMEOUT )) { } } else { TickStart = xTaskGetTickCount(); if (pdFALSE == xSemaphoreTake( *sem, TickElapsed )) { /* if the function times out, it should return SYS_ARCH_TIMEOUT */ return(SYS_ARCH_TIMEOUT); } } /* If the function acquires the semaphore, it should return how many milliseconds expired while waiting for the semaphore */ TickStop = xTaskGetTickCount(); /* Take care of wrap-around */ if (TickStop 》= TickStart) { TickElapsed = TickStop - TickStart; } else { TickElapsed = portMAX_DELAY - TickStart + TickStop; } return(TickElapsed * portTICK_RATE_MS); } else { return (u32_t)ERR_MEM; } } #ifndef sys_sem_valid /** * brief Check if a sempahore is valid/allocated. * * param sem Pointer to the semaphore. * * return Semaphore number on valid, 0 for invalid. */ int sys_sem_valid(sys_sem_t *sem) { return ((int)(*sem)); } #endif #ifndef sys_sem_set_invalid /** * brief Set a semaphore invalid. * * param sem Pointer to the semaphore. */ void sys_sem_set_invalid(sys_sem_t *sem) { *sem = NULL; } #endif /** * brief Creates an empty mailbox for maximum “size” elements. Elements stored * in mailboxes are pointers. * * param mBoxNew Pointer to the new mailbox. * param size Maximum “size” elements. * * return ERR_OK if successfull or ERR_MEM on error. */ err_t sys_mbox_new(sys_mbox_t *mBoxNew, int size ) { err_t err_mbox = ERR_MEM; /* Sanity check */ if (mBoxNew != NULL) { *mBoxNew = xQueueCreate( size, sizeof(void *)); #if SYS_STATS if (SYS_MBOX_NULL != *mBoxNew) { lwip_stats.sys.mbox.used++; if (lwip_stats.sys.mbox.used 》 lwip_stats.sys.mbox.max) { lwip_stats.sys.mbox.max = lwip_stats.sys.mbox.used; } } #endif /* SYS_STATS */ err_mbox = ERR_OK; } return(err_mbox); } /** * brief Deallocates a mailbox. * If there are messages still present in the mailbox when the mailbox is * deallocated, it is an indication of a programming error in lwIP and the * developer should be notified. * * param mbox Pointer to the new mailbox. */ void sys_mbox_free(sys_mbox_t *mbox) { /* Sanity check */ if (mbox != NULL) { if (SYS_MBOX_NULL != *mbox) { #if SYS_STATS lwip_stats.sys.mbox.used--; #endif /* SYS_STATS */ vQueueDelete( *mbox ); } } } /** * brief Posts the “msg” to the mailbox. This function have to block until the * “msg” is really posted. * * param mbox Pointer to the mailbox. * param msg Pointer to the message to be post. */ void sys_mbox_post(sys_mbox_t *mbox, void *msg) { /* Sanit check */ if (mbox != NULL) { while (pdTRUE != xQueueSend( *mbox, &msg, SYS_ARCH_BLOCKING_TICKTIMEOUT )) { } } } /** * brief Try to posts the “msg” to the mailbox. * * param mbox Pointer to the mailbox. * param msg Pointer to the message to be post. * * return ERR_MEM if the mailbox is full otherwise ERR_OK if the “msg” is posted. */ err_t sys_mbox_trypost(sys_mbox_t *mbox, void *msg) { err_t err_mbox = ERR_MEM; /* Sanity check */ if (mbox != NULL) { if (errQUEUE_FULL != xQueueSend( *mbox, &msg, 0 )) { err_mbox = ERR_OK; } } return (err_mbox); } /** * brief Blocks the thread until a message arrives in the mailbox, but does not * block the thread longer than “timeout” milliseconds (similar to the * sys_arch_sem_wait() function)。 * * param mbox Pointer to the mailbox. * param msg A result parameter that is set by the function (i.e., by doing * “*msg = ptr”)。 The “msg” parameter maybe NULL to indicate that the message * should be dropped. * timeout 0 indicates the thread should be blocked until a message arrives. * * return Number of milliseconds spent waiting or SYS_ARCH_TIMEOUT if there was * a timeout. Or ERR_MEM if invalid pointer to message box. */ u32_t sys_arch_mbox_fetch(sys_mbox_t *mbox, void **msg, u32_t timeout) { portTickType TickStart; portTickType TickStop; void *tempoptr; /* Express the timeout in OS tick. */ portTickType TickElapsed = (portTickType)(timeout / portTICK_RATE_MS); /* Sanity check */ if (mbox != NULL) { if (timeout && !TickElapsed) { TickElapsed = 1; /* Wait at least one tick */ } if (msg == NULL) { msg = &tempoptr; } /* NOTE: INCLUDE_xTaskGetSchedulerState must be set to 1 in * FreeRTOSConfig.h for xTaskGetTickCount() to be available */ if (0 == TickElapsed) { TickStart = xTaskGetTickCount(); /* If “timeout” is 0, the thread should be blocked until * a message arrives */ while (pdFALSE == xQueueReceive( *mbox, &(*msg), SYS_ARCH_BLOCKING_TICKTIMEOUT )) { } } else { TickStart = xTaskGetTickCount(); if (pdFALSE == xQueueReceive( *mbox, &(*msg), TickElapsed )) { *msg = NULL; /* if the function times out, it should return * SYS_ARCH_TIMEOUT. */ return(SYS_ARCH_TIMEOUT); } } /* If the function gets a msg, it should return the number of ms * spent waiting. */ TickStop = xTaskGetTickCount(); /* Take care of wrap-around. */ if (TickStop 》= TickStart) { TickElapsed = TickStop - TickStart; } else { TickElapsed = portMAX_DELAY - TickStart + TickStop; } return(TickElapsed * portTICK_RATE_MS); } else { return (u32_t)ERR_MEM; } } /** * brief This is similar to sys_arch_mbox_fetch, however if a message is not * present in the mailbox, it immediately returns with the code SYS_MBOX_EMPTY. * On success 0 is returned. * * param mbox Pointer to the mailbox. * param msg A result parameter that is set by the function (i.e., by doing * “*msg = ptr”)。 The “msg” parameter maybe NULL to indicate that the message * should be dropped. * * return Number of milliseconds spent waiting or SYS_ARCH_TIMEOUT if there was * a timeout. Or ERR_MEM if invalid pointer to message box. */ u32_t sys_arch_mbox_tryfetch(sys_mbox_t *mbox, void **msg) { void *tempoptr; /* Sanity check */ if (mbox != NULL) { if (msg == NULL) { msg = &tempoptr; } if (pdFALSE == xQueueReceive( *mbox, &(*msg), 0 )) { /* if a message is not present in the mailbox, it * immediately returns with */ /* the code SYS_MBOX_EMPTY. */ return(SYS_MBOX_EMPTY); } /* On success 0 is returned. */ return(0); } else { return(SYS_MBOX_EMPTY); } } #ifndef sys_mbox_valid /** * brief Check if an mbox is valid/allocated. * * param mbox Pointer to the mailbox. * * return Mailbox for valid, 0 for invalid. */ int sys_mbox_valid(sys_mbox_t *mbox) { return ((int)(*mbox)); } #endif #ifndef sys_mbox_set_invalid /** * brief Set an mbox invalid. * * param mbox Pointer to the mailbox. */ void sys_mbox_set_invalid(sys_mbox_t *mbox) { *mbox = NULL; } #endif /** * brief Instantiate a thread for lwIP. Both the id and the priority are * system dependent. * * param name Pointer to the thread name. * param thread Thread function. * param arg Argument will be passed into the thread()。 * param stacksize Stack size of the thread. * param prio Thread priority. * * return The id of the new thread. */ sys_thread_t sys_thread_new(const char *name, lwip_thread_fn thread, void *arg, int stacksize, int prio) { sys_thread_t newthread; portBASE_TYPE result; SYS_ARCH_DECL_PROTECT(protectionLevel); result = xTaskCreate( thread, (const portCHAR *)name, stacksize, arg, prio, &newthread ); /* Need to protect this -- preemption here could be a problem! */ SYS_ARCH_PROTECT(protectionLevel); if (pdPASS == result) { /* For each task created, store the task handle (pid) in the * timers array. */ /* This scheme doesn‘t allow for threads to be deleted */ Threads_TimeoutsList[NbActiveThreads++].pid = newthread; } else { newthread = NULL; } SYS_ARCH_UNPROTECT(protectionLevel); return(newthread); } /* Mutex functions: */ /** Define LWIP_COMPAT_MUTEX if the port has no mutexes and binary semaphores * should be used instead */ #if !LWIP_COMPAT_MUTEX /** * brief Create a new mutex. * * param mutex Pointer to the mutex to create. * * return A new mutex. */ err_t sys_mutex_new(sys_mutex_t *mutex) { } /** * brief Lock a mutex. * * param mutex the mutex to lock. */ void sys_mutex_lock(sys_mutex_t *mutex) { } /** * brief Unlock a mutex. * * param mutex the mutex to unlock. */ void sys_mutex_unlock(sys_mutex_t *mutex) { } /** * brief Delete a semaphore. * * param mutex the mutex to delete. */ void sys_mutex_free(sys_mutex_t *mutex) { } #ifndef sys_mutex_valid /** * brief Check if a mutex is valid/allocated. * * param mutex Pointer to the mutex. * * return Valid mutex number or 0 for invalid. */ int sys_mutex_valid(sys_mutex_t *mutex) { return ((int)(*mutex)); } #endif #ifndef sys_mutex_set_invalid /** * brief Set a mutex invalid so that sys_mutex_valid returns 0. * * param mutex Pointer to the mutex. */ void sys_mutex_set_invalid(sys_mutex_t *mutex) { *mutex = NULL; } #endif #endif /* This optional function does a “fast” critical region protection and returns * the previous protection level. This function is only called during very short * critical regions. An embedded system which supports ISR-based drivers might * want to implement this function by disabling interrupts. Task-based systems * might want to implement this by using a mutex or disabling tasking. This * function should support recursive calls from the same task or interrupt. In * other words, sys_arch_protect() could be called while already protected. In * that case the return value indicates that it is already protected.*/ extern volatile unsigned portLONG ulCriticalNesting; /** * brief Protect the system. * * return 1 on success. */ sys_prot_t sys_arch_protect(void) { vPortEnterCritical(); return 1; /* Not used */ } /** * brief Unprotect the system. * * param pval Protect value. */ void sys_arch_unprotect(sys_prot_t pval) { vPortExitCritical(); } /** * brief updata the system time. * * param null. */ extern u32_t LWipTime; u32_t sys_now(void) { return LWipTime; } ethernetif.c #include “lwip/opt.h” #include “lwip/def.h” #include “lwip/mem.h” #include “lwip/pbuf.h” #include 《lwip/stats.h》 #include 《lwip/snmp.h》 #include “netif/etharp.h” #include “netif/ppp_oe.h” #include “stm32_eth.h” #include “Task_LwIP.h” #include 《string.h》 #include “lwip/sys.h” #include “lwip/timers.h” //网卡的名字 #define IFNAME0 ’e‘ #define IFNAME1 ’n‘ #define ETH_DMARxDesc_FrameLengthShift 16 //DMA接收描述符,RDES0软件寄存器中描述帧长度的位的偏移值 #define ETH_ERROR ((u32)0) //出错代码 #define ETH_SUCCESS ((u32)1) //无错代码 #define ETH_RXBUFNB (5+3) //接收缓冲器数量 #define ETH_TXBUFNB (5-3) //发送缓冲器数量 /************************ FreeRTOS使用宏配置 ****************************/ #define netifINTERFACE_TASK_STACK_SIZE ( 350 ) #define netifGUARD_BLOCK_TIME ( 250 ) #define netifINTERFACE_TASK_PRIORITY ( configMAX_PRIORITIES - 1 ) static struct netif *s_pxNetIf = NULL; xSemaphoreHandle s_xSemaphore = NULL; #define emacBLOCK_TIME_WAITING_FOR_INPUT portMAX_DELAY//( ( portTickType ) 100 ) static void arp_timer(void *arg); /************************ 分隔符 ****************************/ extern u8_t MACaddr[6]; //MAC地址,具有唯一性 extern ETH_DMADESCTypeDef *DMATxDescToSet; //当前DMA发送描述符指针,在以太网库文件中定义的 extern ETH_DMADESCTypeDef *DMARxDescToGet; //当前DMA接收描述符指针,在以太网库文件中定义的 ETH_DMADESCTypeDef DMARxDscrTab[ETH_RXBUFNB], DMATxDscrTab[ETH_TXBUFNB]; //发送和接收DMA描述符数组 uint8_t Rx_Buff[ETH_RXBUFNB][ETH_MAX_PACKET_SIZE], Tx_Buff[ETH_TXBUFNB][ETH_MAX_PACKET_SIZE];//发送和接收缓冲区 //数据帧结构体,和我们使用的网卡相关 typedef struct{ u32_t length; //帧长度 u32_t buffer; //缓冲区 ETH_DMADESCTypeDef *descriptor; //指向DMA描述符的指针 }FrameTypeDef; //前置的函数声明 FrameTypeDef ETH_RxPkt_ChainMode(void); //网卡接收数据 u32_t ETH_GetCurrentTxBuffer(void); //获取当前DMA发送描述符下数据缓冲区指针 u32_t ETH_TxPkt_ChainMode(u16 FrameLength); //网卡发送数据 //接收数据函数 //看一看简单的框架和DMA描述符的结构 //整理思路如下 //当网卡接收到数据,会存放在接收缓冲区,接收DMA描述符下有指向其的指针 //我们还要实现一个网卡接收数据的函数ETH_TxPkt_ChainMode,同发送一样ST提供了例程 //得到缓冲区的数据后,我们要将其拷贝到pbuf结构中,供LWip使用 //所以我们最后将数据拷贝到pbuf后,将它作为函数返回值,返回 static struct pbuf * low_level_input(struct netif *netif) { struct pbuf *p, *q; //p要返回的数据,q拷贝数据时用于暂存数据 u16_t len; //保存接收到数据帧的长度 int l =0; //长度,for时暂存中间值 FrameTypeDef frame; //接受侦 u8 *buffer; //接收到数据的地址 p = NULL; //p向指向空,待用 frame = ETH_RxPkt_ChainMode();//接收数据帧 len = frame.length;//将数据帧长度存放在len内待用 buffer = (u8 *)frame.buffer; //得到数据区地址 p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);//内存池分配空间 if (p != NULL)//分配成功 { for (q = p; q != NULL; q = q-》next)//利用for循环拷贝数据 { memcpy((u8_t*)q-》payload, (u8_t*)&buffer[l], q-》len); l = l + q-》len; } } frame.descriptor-》Status = ETH_DMARxDesc_OWN; //设置DMA占用描述符 if ((ETH-》DMASR & ETH_DMASR_RBUS) != (u32)RESET) //通过判断ETH-》DMASR寄存器位7,判断接收缓冲区可不可用 { //接收缓冲区不可用,if成立 ETH-》DMASR = ETH_DMASR_RBUS; //清除接收缓冲区不可用标志 ETH-》DMARPDR = 0;//通过写ETH-》DMARPDR寄存器,恢复DMA接收 } return p;//返回数据 } /** * This function is the ethernetif_input task, it is processed when a packet * is ready to be read from the interface. It uses the function low_level_input() * that should handle the actual reception of bytes from the network * interface. Then the type of the received packet is determined and * the appropriate input function is called. * * @param netif the lwip network interface structure for this ethernetif */ void ethernetif_input( void * pvParameters ) { struct pbuf *p; for( ;; ) { if (xSemaphoreTake( s_xSemaphore, emacBLOCK_TIME_WAITING_FOR_INPUT)==pdTRUE) { p = low_level_input( s_pxNetIf );//调用LWip源码处理数据 if (ERR_OK != s_pxNetIf-》input( p, s_pxNetIf)) {//如果处理失败,释放掉pbuf空间 pbuf_free(p); p=NULL; } } } } //初始化函数 static void low_level_init(struct netif *netif) { struct ethernetif *ethernetif = netif-》state; uint8_t i; netif-》hwaddr_len = ETHARP_HWADDR_LEN; //设置MAC地址长度 netif-》hwaddr[0] = lwipdev.mac[0]; //设置MAC地址,6位,地址唯一,不能重复 netif-》hwaddr[1] = lwipdev.mac[1]; netif-》hwaddr[2] = lwipdev.mac[2]; netif-》hwaddr[3] = lwipdev.mac[3]; netif-》hwaddr[4] = lwipdev.mac[4]; netif-》hwaddr[5] = lwipdev.mac[5]; netif-》mtu = 1500; //最大传输单元 //设置网卡功能 //NETIF_FLAG_BROADCAST允许广播 //NETIF_FLAG_ETHARP开启ARP功能 //NETIF_FLAG_LINK_UP设置后接口产生一个活跃的链接,要开启硬件校验 netif-》flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_LINK_UP; s_pxNetIf =netif; //创建信号量 if (s_xSemaphore == NULL) { s_xSemaphore= xSemaphoreCreateCounting(20,0); } //接下来我们要初始化发送和接收DMA描述符链表 //107VCT6采用链式结构 //我们要先创建DMA描述符数组 //DMA描述符内包含了一个指向接收和发送缓冲区的指针,我们还要创建接收和发送缓冲区,两个数组 ETH_DMATxDescChainInit(DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);//初始化发送DMA描述符链表 ETH_DMARxDescChainInit(DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);//初始化接收DMA描述符链表 //开启DMA描述符接收中断 for(i=0; i《ETH_RXBUFNB; i++) { ETH_DMARxDescReceiveITConfig(&DMARxDscrTab[i], ENABLE); } #if !CHECKSUM_GEN_ICMP //判断是否开启硬件校验,关闭软件校验 //开启发送帧校验 for(i=0; i《ETH_TXBUFNB; i++) { ETH_DMATxDescChecksumInsertionConfig(&DMATxDscrTab[i], ETH_DMATxDesc_ChecksumTCPUDPICMPFull); } #endif //创建单独线程任务,接受来自网卡的数据 xTaskCreate( (TaskFunction_t )ethernetif_input, /* 任务入口函数 */ (const char* )“Eth_if”,/* 任务名字 */ (uint16_t )netifINTERFACE_TASK_STACK_SIZE, /* 任务栈大小 */ (void* )NULL, /* 任务入口函数参数 */ (UBaseType_t )netifINTERFACE_TASK_PRIORITY, /* 任务的优先级 */ (TaskHandle_t* )NULL);/* 任务控制块指针 */ ETH_Start();//开启MAC和DMA } //发送数据函数 //看一看简单的框架和DMA描述符的结构 //整理思路如下 //要发送的数据存放在最为参数传进来的pubf下 //DMA发送描述符内有指向缓冲器的指针,而且我们也设置了缓冲区 //我们首先要得到描述符的DMA缓冲区指针,所以我们要实现一个ETH_GetCurrentTxBuffer函数 //接下来我们将pbuf的数据拷贝到缓冲区 //根据使用的网卡,写一个网卡发送数据的函数ETH_TxPkt_ChainMode //这几个函数ST官方都给了基于DP83848的例程 static err_t low_level_output(struct netif *netif, struct pbuf *p) { static xSemaphoreHandle xTxSemaphore = NULL; struct pbuf *q; uint32_t l = 0; u8 *buffer ; if (xTxSemaphore == NULL) { vSemaphoreCreateBinary (xTxSemaphore); } if (xSemaphoreTake(xTxSemaphore, netifGUARD_BLOCK_TIME)) { buffer = (u8 *)(ETH_GetCurrentTxBuffer()); for(q = p; q != NULL; q = q-》next) { memcpy((u8_t*)&buffer[l], q-》payload, q-》len); l = l + q-》len; } ETH_TxPkt_ChainMode(l); xSemaphoreGive(xTxSemaphore); } return ERR_OK; } /***************************************************/ /***************************************************/ /***************************************************/ static void arp_timer(void *arg) { etharp_tmr(); sys_timeout(ARP_TMR_INTERVAL, arp_timer, NULL); } /************************************************************* * */ err_t ethernetif_init(struct netif *netif) { LWIP_ASSERT(“netif != NULL”, (netif != NULL)); #if LWIP_NETIF_HOSTNAME netif-》hostname = “lwip”;//命名 #endif //初始化netif相关字段 netif-》name[0] = IFNAME0; netif-》name[1] = IFNAME1; netif-》output = etharp_output; netif-》linkoutput = low_level_output; low_level_init(netif); etharp_init(); sys_timeout(ARP_TMR_INTERVAL, arp_timer, NULL); return ERR_OK; } //网卡接收数据函数 FrameTypeDef ETH_RxPkt_ChainMode(void) { u32 framelength = 0; //变量待用 FrameTypeDef frame = {0,0}; //帧结构待用 if((DMARxDescToGet-》Status & ETH_DMARxDesc_OWN) != (u32)RESET)//如果DMA占用描述符成立 { frame.length = ETH_ERROR; //存放错误代码 if ((ETH-》DMASR & ETH_DMASR_RBUS) != (u32)RESET) //如果发送缓存不可用,if成立 { ETH-》DMASR = ETH_DMASR_RBUS; //清除接收缓冲区不可用标志 ETH-》DMARPDR = 0;//通过写ETH-》DMARPDR寄存器,恢复DMA接收 } return frame; //返回帧结构 } //如果上步if不成立,标志描述符由CPU占用 //又要进行3个判断 //ETH_DMARxDesc_ES判断接收中是否出错,成立表示没有错误发生 //ETH_DMARxDesc_LS判断是否到了最后一个缓冲区 //ETH_DMARxDesc_FS判断是否包含了帧的第一个缓冲区 if(((DMARxDescToGet-》Status & ETH_DMARxDesc_ES) == (u32)RESET) && ((DMARxDescToGet-》Status & ETH_DMARxDesc_LS) != (u32)RESET) && ((DMARxDescToGet-》Status & ETH_DMARxDesc_FS) != (u32)RESET)) { //都成立的话,得到帧长度值, //DMA接收描述符RDES0软件寄存器位16-位29存放帧长度值 //右移16位,然后还要减去4个自己的CRC校验 framelength = ((DMARxDescToGet-》Status & ETH_DMARxDesc_FL) 》》 ETH_DMARxDesc_FrameLengthShift) - 4; frame.buffer = DMARxDescToGet-》Buffer1Addr; //得到接收描述符下Buffer1Addr地址,它指向了数据缓冲区 } else//如果上步if不成立 { framelength = ETH_ERROR;//记录错误代码 } frame.length = framelength; //将帧长度值,记录在frame结构体中的length成员 frame.descriptor = DMARxDescToGet;//frame结构体中的descriptor成员指向当前的DMA接收描述符 DMARxDescToGet = (ETH_DMADESCTypeDef*) (DMARxDescToGet-》Buffer2NextDescAddr);//将当前接收DMA描述符指针,指向下一个接收DMA链表中的DMA描述符 return (frame); //返回帧结构 } //网卡发送数据函数 u32_t ETH_TxPkt_ChainMode(u16 FrameLength) { if((DMATxDescToSet-》Status & ETH_DMATxDesc_OWN) != (u32)RESET)//如果DMA占用描述符成立 { return ETH_ERROR;//返回错误代码 } //如果if不成立,表示CPU占用描述符 DMATxDescToSet-》ControlBufferSize = (FrameLength & ETH_DMATxDesc_TBS1);//设置发送帧长度 DMATxDescToSet-》Status |= ETH_DMATxDesc_LS | ETH_DMATxDesc_FS;//ETH_DMATxDesc_LS和ETH_DMATxDesc_FS置1,表示帧中存放了,第一个和最后一个分块 DMATxDescToSet-》Status |= ETH_DMATxDesc_OWN;//把描述符给DMA使用 if ((ETH-》DMASR & ETH_DMASR_TBUS) != (u32)RESET)//如果发送缓存不可用,if成立 { ETH-》DMASR = ETH_DMASR_TBUS;//清除发送缓存不可用标志 ETH-》DMATPDR = 0;//写ETH-》DMATPDR寄存器,以求回复发送流程 } DMATxDescToSet = (ETH_DMADESCTypeDef*) (DMATxDescToSet-》Buffer2NextDescAddr);//将当前发送DMA描述符指针,指向下一个发送DMA链表中的DMA描述符 return ETH_SUCCESS; //返回成功代码 } //获取发送DMA描述符下的缓冲区 u32_t ETH_GetCurrentTxBuffer(void) { return (DMATxDescToSet-》Buffer1Addr); //得到DMA描述符内Buffer1Addr地址。 } 修改lwipopts.h文件 #ifndef __LWIPOPTS_H__ #define __LWIPOPTS_H__ #define SYS_LIGHTWEIGHT_PROT 0 //关保护 //NO_SYS==1:不使用操作系统 #define NO_SYS 0 //1:不使用UCOS操作系统 0:使用操作系统 #ifndef CHECKSUM_GEN_ICMP #define CHECKSUM_GEN_ICMP 0 //我们使用硬件校验,关闭软件校验 #endif //使用4字节对齐模式 #define MEM_ALIGNMENT 4 //MEM_SIZE:heap内存的大小,如果在应用中有大量数据发送的话这个值最好设置大一点 #define MEM_SIZE (5*1024)//16000 //内存堆大小 //MEMP_NUM_PBUF:memp结构的pbuf数量,如果应用从ROM或者静态存储区发送大量数据时,这个值应该设置大一点 #define MEMP_NUM_PBUF 10 //MEMP_NUM_UDP_PCB:UDP协议控制块(PCB)数量。每个活动的UDP“连接”需要一个PCB. #define MEMP_NUM_UDP_PCB 6 //MEMP_NUM_TCP_PCB:同时建立激活的TCP数量 #define MEMP_NUM_TCP_PCB 10 //MEMP_NUM_TCP_PCB_LISTEN:能够监听的TCP连接数量 #define MEMP_NUM_TCP_PCB_LISTEN 6 //MEMP_NUM_TCP_SEG:最多同时在队列中的TCP段数量 #define MEMP_NUM_TCP_SEG 15 //MEMP_NUM_SYS_TIMEOUT:能够同时激活的timeout个数 #define MEMP_NUM_SYS_TIMEOUT 8 /* ---------- Pbuf选项---------- */ //PBUF_POOL_SIZE:pbuf内存池个数。 #define PBUF_POOL_SIZE 20 //PBUF_POOL_BUFSIZE:每个pbuf内存池大小。 #define PBUF_POOL_BUFSIZE 512 /* ---------- TCP选项---------- */ #define LWIP_TCP 1 //为1是使用TCP #define TCP_TTL 255//生存时间 /*当TCP的数据段超出队列时的控制位,当设备的内存过小的时候此项应为0*/ #define TCP_QUEUE_OOSEQ 0 //最大TCP分段 #define TCP_MSS (1500 - 40) //TCP_MSS = (MTU - IP报头大小 - TCP报头大小 //TCP发送缓冲区大小(bytes)。 #define TCP_SND_BUF (4*TCP_MSS) //TCP_SND_QUEUELEN: TCP发送缓冲区大小(pbuf)。这个值最小为(2 * TCP_SND_BUF/TCP_MSS) #define TCP_SND_QUEUELEN (2* TCP_SND_BUF/TCP_MSS) //TCP发送窗口 #define TCP_WND (2*TCP_MSS) /* ---------- ICMP选项---------- */ #define LWIP_ICMP 1 //使用ICMP协议 /* ---------- DHCP选项---------- */ //当使用DHCP时此位应该为1,LwIP 0.5.1版本中没有DHCP服务。 #define LWIP_DHCP 1 /* ---------- UDP选项 ---------- */ #define LWIP_UDP 1 //使用UDP服务 #define UDP_TTL 255 //UDP数据包生存时间 /* ---------- Statistics options ---------- */ #define LWIP_STATS 0 #define LWIP_PROVIDE_ERRNO 1 //STM32F4x7允许通过硬件识别和计算IP,UDP和ICMP的帧校验和 #define CHECKSUM_BY_HARDWARE //定义CHECKSUM_BY_HARDWARE,使用硬件帧校验 #ifdef CHECKSUM_BY_HARDWARE //CHECKSUM_GEN_IP==0: 硬件生成IP数据包的帧校验和 #define CHECKSUM_GEN_IP 0 //CHECKSUM_GEN_UDP==0: 硬件生成UDP数据包的帧校验和 #define CHECKSUM_GEN_UDP 0 //CHECKSUM_GEN_TCP==0: 硬件生成TCP数据包的帧校验和 #define CHECKSUM_GEN_TCP 0 //CHECKSUM_CHECK_IP==0: 硬件检查输入的IP数据包帧校验和 #define CHECKSUM_CHECK_IP 0 //CHECKSUM_CHECK_UDP==0: 硬件检查输入的UDP数据包帧校验和 #define CHECKSUM_CHECK_UDP 0 //CHECKSUM_CHECK_TCP==0: 硬件检查输入的TCP数据包帧校验和 #define CHECKSUM_CHECK_TCP 0 #else //CHECKSUM_GEN_IP==1: 软件生成IP数据包帧校验和 #define CHECKSUM_GEN_IP 1 // CHECKSUM_GEN_UDP==1: 软件生成UDOP数据包帧校验和 #define CHECKSUM_GEN_UDP 1 //CHECKSUM_GEN_TCP==1: 软件生成TCP数据包帧校验和 #define CHECKSUM_GEN_TCP 1 // CHECKSUM_CHECK_IP==1: 软件检查输入的IP数据包帧校验和 #define CHECKSUM_CHECK_IP 1 // CHECKSUM_CHECK_UDP==1: 软件检查输入的UDP数据包帧校验和 #define CHECKSUM_CHECK_UDP 1 //CHECKSUM_CHECK_TCP==1: 软件检查输入的TCP数据包帧校验和 #define CHECKSUM_CHECK_TCP 1 #endif /* --------------------------------- ---------- OS options ---------- --------------------------------- */ #define TCPIP_THREAD_STACKSIZE 1000 #define TCPIP_MBOX_SIZE 5 #define DEFAULT_UDP_RECVMBOX_SIZE 2000 #define DEFAULT_TCP_RECVMBOX_SIZE 2000 #define DEFAULT_ACCEPTMBOX_SIZE 2000 #define DEFAULT_THREAD_STACKSIZE 500 #define TCPIP_THREAD_PRIO (configMAX_PRIORITIES - 2) /* ---------------------------------------------- ---------- SequentialAPI选项---------- ---------------------------------------------- */ //LWIP_NETCONN==1:使能NETCON函数(要求使用api_lib.c) #define LWIP_NETCONN 1 /* ------------------------------------ ---------- Socket API选项---------- ------------------------------------ */ //LWIP_SOCKET==1:使能Socket API(要求使用sockets.c) #define LWIP_SOCKET 1 #define LWIP_COMPAT_MUTEX 1 #define LWIP_SO_RCVTIMEO 1 //通过定义LWIP_SO_RCVTIMEO使能netconn结构体中recv_timeout,使用recv_timeout可以避免阻塞线程 /* ---------------------------------------- ---------- Lwip调试选项---------- ---------------------------------------- */ //#define LWIP_DEBUG 1 //开启DEBUG选项 //#define ICMP_DEBUG 1 //开启/关闭ICMPdebug #if 0 #define U8_F “c” #define S8_F “c” #define X8_F “x” #define U16_F “u” #define S16_F “d” #define X16_F “x” #define U32_F “u” #define S32_F “d” #define X32_F “x” //extern void u2_printf(const char *pcString, 。..); extern void UARTprintf(const char *pcString, 。..); //#define LWIP_PLATFORM_DIAG(x) {u2_printf x;} //#define LWIP_DEBUG #define LWIP_DBG_MIN_LEVEL LWIP_DBG_LEVEL_OFF //#define LWIP_DBG_MIN_LEVEL LWIP_DBG_LEVEL_WARNING //#define LWIP_DBG_MIN_LEVEL LWIP_DBG_LEVEL_SERIOUS //#define LWIP_DBG_MIN_LEVEL LWIP_DBG_LEVEL_SEVERE //#define LWIP_DBG_TYPES_ON LWIP_DBG_ON //#define LWIP_DBG_TYPES_ON (LWIP_DBG_ON|LWIP_DBG_TRACE|LWIP_DBG_STATE|LWIP_DBG_FRESH) //#define ETHARP_DEBUG LWIP_DBG_ON //#define NETIF_DEBUG LWIP_DBG_ON //#define PBUF_DEBUG LWIP_DBG_ON //#define API_LIB_DEBUG LWIP_DBG_ON //#define API_MSG_DEBUG LWIP_DBG_ON //#define SOCKETS_DEBUG LWIP_DBG_ON //#define ICMP_DEBUG LWIP_DBG_ON //#define IGMP_DEBUG LWIP_DBG_ON //#define INET_DEBUG LWIP_DBG_ON #define IP_DEBUG LWIP_DBG_ON //#define IP_REASS_DEBUG LWIP_DBG_ON //#define RAW_DEBUG LWIP_DBG_ON //#define MEM_DEBUG LWIP_DBG_ON //#define MEMP_DEBUG LWIP_DBG_ON //#define SYS_DEBUG LWIP_DBG_ON #define TCP_DEBUG LWIP_DBG_ON //#define TCP_INPUT_DEBUG LWIP_DBG_ON //#define TCP_FR_DEBUG LWIP_DBG_ON //#define TCP_RTO_DEBUG LWIP_DBG_ON //#define TCP_CWND_DEBUG LWIP_DBG_ON //#define TCP_WND_DEBUG LWIP_DBG_ON #define TCP_OUTPUT_DEBUG LWIP_DBG_ON //#define TCP_RST_DEBUG LWIP_DBG_ON //#define TCP_QLEN_DEBUG LWIP_DBG_ON //#define UDP_DEBUG LWIP_DBG_ON //#define TCPIP_DEBUG LWIP_DBG_ON //#define PPP_DEBUG LWIP_DBG_ON //#define SLIP_DEBUG LWIP_DBG_ON //#define DHCP_DEBUG LWIP_DBG_ON //#define AUTOIP_DEBUG LWIP_DBG_ON //#define SNMP_MSG_DEBUG LWIP_DBG_ON //#define SNMP_MIB_DEBUG LWIP_DBG_ON //#define DNS_DEBUG LWIP_DBG_ON #endif #endif /* __LWIPOPTS_H__ */ 主要的几个文件我罗列一下,不然太长了,还有为毛win10的edge支持的这么差,还要找个游览器才能写。 上一下效果图 |
|
|
|
只有小组成员才能发言,加入小组>>
调试STM32H750的FMC总线读写PSRAM遇到的问题求解?
1771 浏览 1 评论
X-NUCLEO-IHM08M1板文档中输出电流为15Arms,15Arms是怎么得出来的呢?
1619 浏览 1 评论
1070 浏览 2 评论
STM32F030F4 HSI时钟温度测试过不去是怎么回事?
724 浏览 2 评论
ST25R3916能否对ISO15693的标签芯片进行分区域写密码?
1673 浏览 2 评论
1936浏览 9评论
STM32仿真器是选择ST-LINK还是选择J-LINK?各有什么优势啊?
729浏览 4评论
STM32F0_TIM2输出pwm2后OLED变暗或者系统重启是怎么回事?
569浏览 3评论
594浏览 3评论
stm32cubemx生成mdk-arm v4项目文件无法打开是什么原因导致的?
552浏览 3评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-22 21:31 , Processed in 0.803791 second(s), Total 78, Slave 61 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号