完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
|
|
相关推荐
1个回答
|
|
信号完整性和电源完整性是两种不同但领域相关的分析,涉及数字电路正确操作。在信号完整性中,重点是确保传输的1在接收器中看起来就像 1(对0同样如此)。在电源完整性中,重点是确保为驱动器和接收器提供足够的电流以发送和接收1和0。因此,电源完整性可能会被认为是信号完整性的一个组成部分。实际上,它们都是关于数字电路正确模拟操作的分析。
信号完整性(SI)和电源完整性(PI)是两种不同但领域相关的分析,涉及数字电路正确操作。在信号完整性中,重点是确保传输的1在接收器中看起来就像 1(对0同样如此)。在电源完整性中,重点是确保为驱动器和接收器提供足够的电流以发送和接收1和0。因此,电源完整性可能会被认为是信号完整性的一个组成部分。实际上,它们都是关于数字电路正确模拟操作的分析。 分析的必要性 如果计算资源是无限的,这些不同类型的分析可能不存在。整个电路将会被分析一次,而电路某一部分中的问题将会被识别并消除。但除了受实际上可仿真哪些事物的现实束缚之外,具有不同领域分析的优点在于,可成组解决特定问题,而无需归类为“可能出错的任何事物”。在信号完整性中,例如,重点是从发射器到接收器的链路。可仅为发射器和接收器以及中间的一切事物创建模型。这使得仿真信号完整性变得相当简单。另一方面,要仿真电源完整性可能有点困难,因为“边界”有点不太明确,且实际上对信号完整性领域中的项目具有一定的依赖性。 在信号完整性中,目标是消除关于信号质量、串扰和定时的问题。所有这些类型的分析都需要相同类型的模型。它们包括驱动器和接收器、芯片封装及电路板互连(由走线及过孔、分立器件和/或连接器组成)的模型。驱动器和接收器模型包括关于缓冲器阻抗、翻转率和电压摆幅的信息。通常,IBIS 或 SPICE 模型用作缓冲器模型。这些模型与互连模型结合使用来运行仿真,从而确定接收器中的信号情况。 互连将主要包括行为类似于传输线的电路板走线。此类传输线具有阻抗、延迟和损耗特性。它们的特性决定了所连接的驱动器和接收器与彼此进行交互的方式。互连的电磁特性必须使用某种类型的场求解器进行求解,该场求解器通过可与信号完整性仿真器结合使用的电路元件或 S 参数模型来描述其特征。大多数走线均可建模为一个均匀的二维横截面。该横截面足以计算走线的阻抗特性。阻抗将会影响信号线上接收器中的波形形状。最基本的信号完整性分析包括设置电路板叠层(包括适当的介电层厚度),以及查找正确的走线宽度,以实现一定的走线目标阻抗。 与过孔相比,对走线进行建模会相对比较容易。当对较快的信号进行信号完整性分析时,适当的过孔建模就变得非常重要。通常,千兆位信号需要通过三维场求解器对模型特征进行适当地描述。幸运的是,这些信号往往是不同的,这使它们的影响相对局部化。穿过过孔的快速、单端信号与配电网络(PDN)进行强有力地交互。从这些过孔返回的电流穿过附近的缝合孔、缝合电容器和/或平面对(组成PDN且需要建模以进行电源完整性分析的相同元器件)。 图1:在走线横截面、信号过孔和 PDN 上的能量传播。 在电源完整性分析中,较高频率的能量分布在整个传输平面上。这立即使此分析比基本信号完整性更复杂,因为能量将沿x和y方向移动,而不是仅沿传输线一个方向移动。在直流中,建模需要计算走线的串联电阻、平面形状和过孔相对较为简单。但是对于高频率,分析PDN的不同位置上电源与地面之间的阻抗需要复杂的计算。阻抗将根据电路板的位置(电容器的放置位置、安装方式、类型及电容值)而异。高频行为(如安装电感和平面扩散电感)需要包括在建模中,以便生成准确的去耦分析结果。存在简单版本的去耦分析(通常称为集总分析),在此分析中,会将PDN视为一个节点来计算其阻抗。这通常是可一次性成功的有效而快速的初步分析,可确保有足够的电容器且它们具有正确的值。然后,运行分布式去耦分析可确保在电路板的不同位置满足PDN的所有阻抗需求。 信号完整性仿真 信号完整性仿真重点分析有关高速信号的3个主要问题:信号质量、串扰和时序。对于信号质量,目标是获取具有明确的边缘,且没有过度过冲和下冲的信号。通常,可以通过添加某种类型的端接以使驱动器的阻抗与传输线的阻抗相匹配来解决这些问题。对于多点分支总线,并非总能匹配阻抗,因此,需要将端接和拓扑的长度变化相结合来控制反射,使得它们不会对信号质量和时序产生不利影响。 图2:使用信号完整性分析和设计空间探索消除信号质量和串扰问题。 可以运行这些相同的仿真,以确定信号经过电路板时的传输时间。电路板时序是系统时序的一个重要组成部分,并受线路长度、其在经过电路板时的传播速度以及接收器中波形形状的影响。由于波形的形状确定了接收的信号穿越逻辑阈值的时间,因此,它对于时序来说是非常重要的。这些仿真通常会驱动走线长度约束的变化。 通常运行的另一个信号完整性仿真是串扰。这涉及多条相互耦合的传输线。随着走线挤进密集的电路板设计,了解它们正在相互耦合多少能量对于消除因串扰产生的错误是非常重要的。这些仿真将推动走线之间的最小间距要求。 电源完整性仿真 在电源完整性分析中,主要仿真类型有直流压降分析、去耦分析和噪声分析。直流压降分析包括对PCB上复杂走线和平面形状的分析,可用于确定由于铜的电阻将损失多少电压。此外,还可以使用直流压降分析来确定高电流密度区域。实际上,可以使用热仿真器对它们进行协同仿真,以查看热效应。幸运的是,针对直流压降问题的解决方案非常简单:添加更多的金属。这些额外金属可能会采用更宽和/或更厚的走线和平面形状、额外平面或额外过孔。 图3:显示PI/热协同仿真中“热点”的电流密度和温度图。 上面简要讨论的去耦分析旨在确定和最大限度减少电路板不同IC位置上电源与地面之间的阻抗。去耦分析通常会驱动PDN中所用电容器的值、类型和数量的变化。因此,它需要包括寄生电感和电阻的电容器模型。它还会驱动电容器安装方式的变化和/或电路板叠层的变化,以满足低阻抗要求。 噪声分析的类型可能会有所不同。它们可以包括围绕电路板传播的、来自IC电源管脚中的噪声,可通过去耦电容器对其进行控制。通过噪声分析,可以调查噪声如何从一个过孔耦合到另一个过孔,可以对同步开关噪声进行分析。在许多情况下,这种噪声是由信号切换(从1到0及从0到1)引起的,因此它与信号完整性密切相关。但在所有情况下,这些电源完整性分析的最终目标是驱动PDN的变化:电源/地面平面对、走线、电容器和过孔。 表 1. 信号完整性和电源完整性之间的差异 PDN不仅充当为IC提供电流的手段,还用作信号的返回电流路径。信号完整性与电源完整性之间的大量交叉发生在过孔中。对于穿过过孔的单端信号来说,PDN充当该信号的返回电流路径。附近的过孔或电容器为返回电流提供路径,以使其从一个平面移至下一个平面。因此,PDN实际上决定了该单端过孔的阻抗和延迟特性,并且对于更快的单端信号(如DDR3和DDR4)的精确建模来说是至关重要的。使用这一相同的SI/PI组合过孔模型,可以分析从一个过孔到下一个过孔的耦合,以及信号通过过孔到PDN的耦合。 同样地,PDN对于最大限度减少可能由多个信号切换(通常称为SSN)同时引起的噪声来说是至关重要的。如果在IC电源管脚中的PDN阻抗太高,当所有驱动器同时切换时,它们的切换电流将产生电压,而该电压可在信号本身中观察到。可通过利用去耦分析设计一个出色的低阻抗PDN来消除此问题。全面仿真此问题以查看对信号的影响,要求能够同时执行信号完整性分析和电源完整性分析。驱动器的SPICE模型传统上用于执行此类分析,但更新的IBIS模型也具有相应的基础架构,以包括在查找信号完整性时的PDN影响。 信号完整性和电源完整性的分析对于成功的高速数字设计来说是至关重要的。它们为需要进行哪些设计更改提供了有价值的见解。此外,随着建模方法和计算能力的改善,如果能够同时仿真这两种类型的完整性,则会清楚地了解电路的实际行为、设计中真正存在的利润以及它们如何实现最佳可能性能。 |
|
|
|
只有小组成员才能发言,加入小组>>
938 浏览 2 评论
12846 浏览 0 评论
4140 浏览 7 评论
2349 浏览 9 评论
2178 浏览 2 评论
467浏览 2评论
820浏览 2评论
938浏览 2评论
415浏览 1评论
649浏览 1评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-18 11:32 , Processed in 0.866033 second(s), Total 45, Slave 39 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号