完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
设计原理
在本文所提出的开关电源适配器设计方案中,我们采用的是比较新颖的两级式设计思路,适配器的前级功率因数校正采用 Boost 变换器,这样的选择能够有效提高低输入电压时的变换效率,其 PFC 级采用变输出电压的方法,其输出电压跟随输入电压变化。而后级 DC-DC 变换器则选择采用两路反激变换器交错并联,通过这一方式能够减小其输入和输出电流纹波,同时采用同步整流技术,以进一步提高变换效率。 (a)主功率电路图 (b)Boost 变换器电感电流临界连续模式主要波形图 图 1 PFC 级工作原理 上图中,图 1 分别给出了我们所设计的这一开关电源适配器的主功率电路图,以及 Boost 变换器电感电流临界连续模式下的主要波形图。其中,图 1(a)为提出的新型两级式变换器的主功率电路图。从图 1(a)中可以看到,该方案中,Boost 变换器采用电感电流临界连续模式的控制方式,这种控制方式的优点是二极管零电流关断没有反向恢复的问题,同时具有功率因数高的优势,且原边开关管能够保持零电流开通。 在 PFC 级的设计中,我们所采用的 Boost 变换器处于电感电流临界连续模式下工作时,其主要波形如上图中的图 1(b)所示。在一个开关周期内,当电感电流 iLB 为零时,则二极管 DB 关断,此时开通开关管 SB,iLB 由零开始线性增加。当它达到整流桥输出母线的电压采样信号时,关断 SB,DB 开通,iLB 由最大值线性下降到零。在输入电压的 1/2 周期内,由多个开关周期组成。在每个开关周期内,iLB 的平均值跟随整流桥输出电压,因此 iLB 的平均值跟踪整流桥输出电压波形,由此实现 PFC 的功能。 在图 1 所设计的这一主功率电路图中,当输出功率相同时,输入电压低,相应的输入电流有效值较大。而当低输入电压时,Boost 变换器的主要损耗是整流桥的导通损耗和开关管的导通损耗。根据 Boost 变换器的电压输入输出关系 Vo=Vin/(1-D)可知,当输入电压固定时,输出电压越低,占空比越小,因此开关管导通损耗越小。为了提高输入电压低时的效率,我们可以将输出电压降低。因此,针对 PFC 级输入电压范围宽(90-265Vac)的特点,采用变输出电压的控制方式,在该控制方式下,输入电压与输出电压的关系如下图图 2(a)所示。 (a) (b) 图 2 PFC 级 Uin 与 Uopfc 的关系及其控制电路图 在了解了 Boost 变换器处于变输出电压的控制方式下输入电压与输出电压的关系后,上图中,图 2(b)给出的是在这一开关电源适配器设计方案中,Boost 变换器输出电压跟随输入电压线性变化的控制电路图。从图 2(b)中可以看出,在电压闭环中引入输入电压有效值作为前馈量,采样信号取反后与输出电压的采样信号取和,接到 PI 调节器的反向输入端。在这一控制电路系统中,PI 调节器的输出接到乘法器的输入端,与整流桥输出电压的采样相乘后作为电流环的给定,以此来控制电感电流的幅值。当输入电压变化时,输出电压也随之变化。 |
|
|
|
只有小组成员才能发言,加入小组>>
809 浏览 1 评论
1003 浏览 1 评论
12434 浏览 0 评论
5886 浏览 3 评论
17676 浏览 6 评论
997浏览 1评论
973浏览 1评论
814浏览 1评论
3885浏览 1评论
1003浏览 1评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-11-23 17:29 , Processed in 0.736728 second(s), Total 48, Slave 39 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号