发 帖  
原厂入驻New
[经验]

【大联大友尚安森美半导体感光芯片USB双目摄像头模组试用体验】敏感人群自动追踪系统开发

2020-9-26 14:46:01  266 摄像头 usb 大联大 安森美半导体 c语言
分享
1
感谢主办方提供的双目摄像头提供测试。本项目利用双目摄像头模组+LattePanda Delta 432+NCS2神经棒部署openvino做一个敏感人群自动追踪装置,在热点地区或车辆顶上自动搜索指定的敏感人群人脸(如失踪人群等)。系统会调用摄像头图像根据目标文件夹的目标图像去搜索,相似度阀值大于设置值就报警显示出来。
依次在LattePanda
Delta 432上搭建openvino环境进行开发、测试运行。
1.开发环境搭建步骤:
1)安装microsoft Visual Studio* with C++ 2019 with MSBuild(注意安装community版,选中 “.NET 桌面开发”、“使用 C++ 的桌面开发”、“通用 Windows 平台开发”,选择MSBuild)
2)安装CMake 3.4 or higher 64-bit
3)Python 3.5 - 3.7 64-bit(如果安装过Anaconda就不必再安装)
4)设置环境变量
5)安装openvino(注意版本选择,不一定最新版本最好,新版本有空可以研究。2020.3版安装后好像发现自带openCV库缺文件,单独安装opencv才解决。2020.2版用到现在还没问题)
一般经过这个过程运行测试代码demo_security_barrier_camera.bat -d CPU会没问题,会出来识别汽车车牌图片,说明安装成功。
oopenvino.jpeg
2.使用注意事项:
1).在cmd里面运行前,要右键cmd选择用管理员运行,否则一些命令会由于目录权限不够运行不了。
2).运行命令时,CPU、GPU、MYRIAD这些设备要大写,不能小写,因为这些是作为参数引入的,特别python是区分大小写,所以写错会匹配不到参数出问题。
3).下载一些东西是由于有些东西是国外的,文件比较大的时候会失败,需要切换到清华源等国内源再下载。
4)openvino要求最低6代酷睿处理器,太老的cpu不行。这次用的LattePanda 拿铁熊猫 Delta 432由于cpu是用的Intel 8th Gen Celeron Processor N4100,好像并不在支持之列。所以我们后来是用NCS2神经棒来运行的。
3.程序编写:
参考openvino的官方案例程序按项目需求改写。
1)程序文件
face_detector.py  处理面部探测
face_identi€€Fier.py  处理面部对比识别
faces_database.py 处理模型标准图片
ie_module.py  模型处理
landmarks_detector.py 处理标识探测

face_recognition_demo.py 主程序
2)用到的模型:
face-detection-adas-0001
face-reidentification-retail-0095
landmarks-regression-retail-0009
3)主程序分析:
主要说下主程序face_recognition_demo.py ,我们设置了超过70%的相似度阀值就触发报警,当然报警可以多种方式,可以是窗口报警,也可以是发出报警邮件,可按要求去改写:
import logging as log
import os.path as osp
import sys
import time
from argparse import ArgumentParser

import cv2
import numpy as np

from openvino.inference_engine import IENetwork
from ie_module import InferenceContext
from landmarks_detector import LandmarksDetector
from face_detector import FaceDetector
from faces_database import FacesDatabase
from face_identifier import FaceIdentifier

DEVICE_KINDS = ['CPU', 'GPU', 'FPGA', 'MYRIAD', 'HETERO', 'HDDL']
MATCH_ALGO = ['HUNGARIAN', 'MIN_DIST']


def build_argparser():
    parser = ArgumentParser()

    general = parser.add_argument_group('General')
    general.add_argument('-i', '--input', metavar="PATH", default='0',
                         help="(optional) Path to the input video " \
                         "('0' for the camera, default)")
    general.add_argument('-o', '--output', metavar="PATH", default="",
                         help="(optional) Path to save the output video to")
    general.add_argument('--no_show', action='store_true',
                         help="(optional) Do not display output")
    general.add_argument('-tl', '--timelapse', action='store_true',
                         help="(optional) Auto-pause after each frame")
    general.add_argument('-cw', '--crop_width', default=0, type=int,
                         help="(optional) Crop the input stream to this width " \
                         "(default: no crop). Both -cw and -ch parameters " \
                         "should be specified to use crop.")
    general.add_argument('-ch', '--crop_height', default=0, type=int,
                         help="(optional) Crop the input stream to this height " \
                         "(default: no crop). Both -cw and -ch parameters " \
                         "should be specified to use crop.")
    general.add_argument('--match_algo', default='HUNGARIAN', choices=MATCH_ALGO,
                         help="(optional)algorithm for face matching(default: %(default)s)")

    gallery = parser.add_argument_group('Faces database')
    gallery.add_argument('-fg', metavar="PATH", required=True,
                         help="Path to the face images directory")
    gallery.add_argument('--run_detector', action='store_true',
                         help="(optional) Use Face Detection model to find faces" \
                         " on the face images, otherwise use full images.")

    models = parser.add_argument_group('Models')
    models.add_argument('-m_fd', metavar="PATH", default="", required=True,
                        help="Path to the Face Detection model XML file")
    models.add_argument('-m_lm', metavar="PATH", default="", required=True,
                        help="Path to the Facial Landmarks Regression model XML file")
    models.add_argument('-m_reid', metavar="PATH", default="", required=True,
                        help="Path to the Face Reidentification model XML file")
    models.add_argument('-fd_iw', '--fd_input_width', default=0, type=int,
                         help="(optional) specify the input width of detection model " \
                         "(default: use default input width of model). Both -fd_iw and -fd_ih parameters " \
                         "should be specified for reshape.")
    models.add_argument('-fd_ih', '--fd_input_height', default=0, type=int,
                         help="(optional) specify the input height of detection model " \
                         "(default: use default input height of model). Both -fd_iw and -fd_ih parameters " \
                         "should be specified for reshape.")

    infer = parser.add_argument_group('Inference options')
    infer.add_argument('-d_fd', default='CPU', choices=DEVICE_KINDS,
                       help="(optional) Target device for the " \
                       "Face Detection model (default: %(default)s)")
    infer.add_argument('-d_lm', default='CPU', choices=DEVICE_KINDS,
                       help="(optional) Target device for the " \
                       "Facial Landmarks Regression model (default: %(default)s)")
    infer.add_argument('-d_reid', default='CPU', choices=DEVICE_KINDS,
                       help="(optional) Target device for the " \
                       "Face Reidentification model (default: %(default)s)")
    infer.add_argument('-l', '--cpu_lib', metavar="PATH", default="",
                       help="(optional) For MKLDNN (CPU)-targeted custom layers, if any. " \
                       "Path to a shared library with custom layers implementations")
    infer.add_argument('-c', '--gpu_lib', metavar="PATH", default="",
                       help="(optional) For clDNN (GPU)-targeted custom layers, if any. " \
                       "Path to the XML file with descriptions of the kernels")
    infer.add_argument('-v', '--verbose', action='store_true',
                       help="(optional) Be more verbose")
    infer.add_argument('-pc', '--peRF_stats', action='store_true',
                       help="(optional) Output detaiLED per-layer performance stats")
    infer.add_argument('-t_fd', metavar='[0..1]', type=float, default=0.6,
                       help="(optional) Probability threshold for face detections" \
                       "(default: %(default)s)")
    infer.add_argument('-t_id', metavar='[0..1]', type=float, default=0.3,
                       help="(optional) Cosine distance threshold between two vectors " \
                       "for face identification (default: %(default)s)")
    infer.add_argument('-exp_r_fd', metavar='NUMBER', type=float, default=1.15,
                       help="(optional) Scaling ratio for bboxes passed to face recognition " \
                       "(default: %(default)s)")
    infer.add_argument('--allow_grow', action='store_true',
                       help="(optional) Allow to grow faces gallery and to dump on disk. " \
                       "Available only if --no_show option is off.")

    return parser



class FrameProcessor:
    QUEUE_SIZE = 16

    def __init__(self, args):
        used_devices = set([args.d_fd, args.d_lm, args.d_reid])
        self.context = InferenceContext(used_devices, args.cpu_lib, args.gpu_lib, args.perf_stats)
        context = self.context

        log.info("Loading models")
        face_detector_net = self.load_model(args.m_fd)

        assert (args.fd_input_height and args.fd_input_width) or \
               (args.fd_input_height==0 and args.fd_input_width==0), \
            "Both -fd_iw and -fd_ih parameters should be specified for reshape"

        if args.fd_input_height and args.fd_input_width :
            face_detector_net.reshape({"data": [1, 3, args.fd_input_height,args.fd_input_width]})
        landmarks_net = self.load_model(args.m_lm)
        face_reid_net = self.load_model(args.m_reid)

        self.face_detector = FaceDetector(face_detector_net,
                                          confidence_threshold=args.t_fd,
                                          roi_scale_factor=args.exp_r_fd)

        self.landmarks_detector = LandmarksDetector(landmarks_net)
        self.face_identifier = FaceIdentifier(face_reid_net,
                                              match_threshold=args.t_id,
                                              match_algo = args.match_algo)

        self.face_detector.deploy(args.d_fd, context)
        self.landmarks_detector.deploy(args.d_lm, context,
                                       queue_size=self.QUEUE_SIZE)
        self.face_identifier.deploy(args.d_reid, context,
                                    queue_size=self.QUEUE_SIZE)
        log.info("Models are loaded")

        log.info("Building faces database using images from '%s'" % (args.fg))
        self.faces_database = FacesDatabase(args.fg, self.face_identifier,
                                            self.landmarks_detector,
                                            self.face_detector if args.run_detector else None, args.no_show)
        self.face_identifier.set_faces_database(self.faces_database)
        log.info("Database is built, registered %s identities" % \
            (len(self.faces_database)))

        self.allow_grow = args.allow_grow and not args.no_show

    def load_model(self, model_path):
        model_path = osp.abspath(model_path)
        model_description_path = model_path
        model_weights_path = osp.splitext(model_path)[0] + ".bin"
        log.info("Loading the model from '%s'" % (model_description_path))
        assert osp.isfile(model_description_path), \
            "Model description is not found at '%s'" % (model_description_path)
        assert osp.isfile(model_weights_path), \
            "Model weights are not found at '%s'" % (model_weights_path)
        model = IENetwork(model_description_path, model_weights_path)
        log.info("Model is loaded")
        return model

    def process(self, frame):
        assert len(frame.shape) == 3, \
            "Expected input frame in (H, W, C) format"
        assert frame.shape[2] in [3, 4], \
            "Expected BGR or BGRA input"

        orig_image = frame.copy()
        frame = frame.transpose((2, 0, 1)) # HWC to CHW
        frame = np.expand_dims(frame, axis=0)

        self.face_detector.clear()
        self.landmarks_detector.clear()
        self.face_identifier.clear()

        self.face_detector.start_async(frame)
        rois = self.face_detector.get_roi_proposals(frame)
        if self.QUEUE_SIZE < len(rois):
            log.warning("Too many faces for processing." \
                    " Will be processed only %s of %s." % \
                    (self.QUEUE_SIZE, len(rois)))
            rois = rois[:self.QUEUE_SIZE]
        self.landmarks_detector.start_async(frame, rois)
        landmarks = self.landmarks_detector.get_landmarks()

        self.face_identifier.start_async(frame, rois, landmarks)
        face_identities, unknowns = self.face_identifier.get_matches()
        if self.allow_grow and len(unknowns) > 0:
            for i in unknowns:
                # This check is preventing asking to save half-images in the boundary of images
                if rois.position[0] == 0.0 or rois.position[1] == 0.0 or \
                    (rois.position[0] + rois.size[0] > orig_image.shape[1]) or \
                    (rois.position[1] + rois.size[1] > orig_image.shape[0]):
                    continue
                crop = orig_image[int(rois.position[1]):int(rois.position[1]+rois.size[1]), int(rois.position[0]):int(rois.position[0]+rois.size[0])]
                #name = self.faces_database.ask_to_save(crop)   xy
                """#xy
                if name:   
                    id = self.faces_database.dump_faces(crop, face_identities.descriptor, name)
                    face_identities.id = id
                """

        outputs = [rois, landmarks, face_identities]

        return outputs


    def get_performance_stats(self):
        stats = {
            'face_detector': self.face_detector.get_performance_stats(),
            'landmarks': self.landmarks_detector.get_performance_stats(),
            'face_identifier': self.face_identifier.get_performance_stats(),
        }
        return stats


class Visualizer:
    BREAK_KEY_LABELS = "q(Q) or Escape"
    BREAK_KEYS = {ord('q'), ord('Q'), 27}


    def __init__(self, args):
        self.frame_processor = FrameProcessor(args)
        self.display = not args.no_show
        self.print_perf_stats = args.perf_stats

        self.frame_time = 0
        self.frame_start_time = 0
        self.fps = 0
        self.frame_num = 0
        self.frame_count = -1

        self.input_crop = None
        if args.crop_width and args.crop_height:
            self.input_crop = np.array((args.crop_width, args.crop_height))

        self.frame_timeout = 0 if args.timelapse else 1

    def update_fps(self):
        now = time.time()
        self.frame_time = now - self.frame_start_time
        self.fps = 1.0 / self.frame_time
        self.frame_start_time = now

    def draw_text_with_background(self, frame, text, origin,
                                  font=cv2.FONT_HERSHEY_SIMPLEX, scale=1.0,
                                  color=(0, 0, 0), thickness=1, bgcolor=(255, 255, 255)):
        text_size, baseline = cv2.getTextSize(text, font, scale, thickness)
        cv2.rectangle(frame,
                      tuple((origin + (0, baseline)).astype(int)),
                      tuple((origin + (text_size[0], -text_size[1])).astype(int)),
                      bgcolor, cv2.FILLED)
        cv2.putText(frame, text,
                    tuple(origin.astype(int)),
                    font, scale, color, thickness)
        return text_size, baseline

    def draw_detection_roi(self, frame, roi, identity):
        label = self.frame_processor \
            .face_identifier.get_identity_label(identity.id)
        #xy 根据置信度阀值判断是否需要报警

        confidence = 100.0 * (1 - identity.distance)
        if confidence>70:
            log.info('find missing people! NAME is %s %f' % (label,(100.0 * (1 - identity.distance))))

        # Draw face ROI border
        cv2.rectangle(frame,
                      tuple(roi.position), tuple(roi.position + roi.size),
                      (0, 220, 0), 2)

        # Draw identity label
        text_scale = 0.5
        font = cv2.FONT_HERSHEY_SIMPLEX
        text_size = cv2.getTextSize("H1", font, text_scale, 1)
        line_height = np.array([0, text_size[0][1]])
        text = label
        if identity.id != FaceIdentifier.UNKNOWN_ID:
            text += ' %.2f%%' % (100.0 * (1 - identity.distance))
        self.draw_text_with_background(frame, text,
                                       roi.position - line_height * 0.5,
                                       font, scale=text_scale)

    def draw_detection_keypoints(self, frame, roi, landmarks):
        keypoints = [landmarks.left_eye,
                     landmarks.right_eye,
                     landmarks.nose_tip,
                     landmarks.left_lip_corner,
                     landmarks.right_lip_corner]

        for point in keypoints:
            center = roi.position + roi.size * point
            cv2.circle(frame, tuple(center.astype(int)), 2, (0, 255, 255), 2)

    def draw_detections(self, frame, detections):
        for roi, landmarks, identity in zip(*detections):
            self.draw_detection_roi(frame, roi, identity)
            self.draw_detection_keypoints(frame, roi, landmarks)

    def draw_status(self, frame, detections):
        origin = np.array([10, 10])
        color = (10, 160, 10)
        font = cv2.FONT_HERSHEY_SIMPLEX
        text_scale = 0.5
        text_size, _ = self.draw_text_with_background(frame,
                                                      "Frame time: %.3fs" % (self.frame_time),
                                                      origin, font, text_scale, color)
        self.draw_text_with_background(frame,
                                       "FPS: %.1f" % (self.fps),
                                       (origin + (0, text_size[1] * 1.5)), font, text_scale, color)

        log.debug('Frame: %s/%s, detections: %s, ' \
                  'frame time: %.3fs, fps: %.1f' % \
                     (self.frame_num, self.frame_count, len(detections[-1]), self.frame_time, self.fps))

        if self.print_perf_stats:
            log.info('Performance stats:')
            log.info(self.frame_processor.get_performance_stats())

    def display_interactive_window(self, frame):
        color = (255, 255, 255)
        font = cv2.FONT_HERSHEY_SIMPLEX
        text_scale = 0.5
        text = "Press '%s' key to exit" % (self.BREAK_KEY_LABELS)
        thickness = 2
        text_size = cv2.getTextSize(text, font, text_scale, thickness)
        origin = np.array([frame.shape[-2] - text_size[0][0] - 10, 10])
        line_height = np.array([0, text_size[0][1]]) * 1.5
        cv2.putText(frame, text,
                    tuple(origin.astype(int)), font, text_scale, color, thickness)

        cv2.imshow('Looking for missing people!', frame) #xy

    def should_stop_display(self):
        key = cv2.waitKey(self.frame_timeout) & 0xFF
        return key in self.BREAK_KEYS

    def process(self, input_stream, output_stream):
        self.input_stream = input_stream
        self.output_stream = output_stream

        while input_stream.isOpened():
            has_frame, frame = input_stream.read()
            if not has_frame:
                break

            if self.input_crop is not None:
                frame = Visualizer.center_crop(frame, self.input_crop)
            detections = self.frame_processor.process(frame)

            self.draw_detections(frame, detections)
            self.draw_status(frame, detections)

            if output_stream:
                output_stream.write(frame)
            if self.display:
                self.display_interactive_window(frame)
                if self.should_stop_display():
                    break

            self.update_fps()
            self.frame_num += 1

    @staticmethod
    def center_crop(frame, crop_size):
        fh, fw, fc = frame.shape
        crop_size[0] = min(fw, crop_size[0])
        crop_size[1] = min(fh, crop_size[1])
        return frame[(fh - crop_size[1]) // 2 : (fh + crop_size[1]) // 2,
                     (fw - crop_size[0]) // 2 : (fw + crop_size[0]) // 2,
                     :]

    def run(self, args):
        input_stream = Visualizer.open_input_stream(args.input)
        if input_stream is None or not input_stream.isOpened():
            log.error("Cannot open input stream: %s" % args.input)
        fps = input_stream.get(cv2.CAP_PROP_FPS)
        frame_size = (int(input_stream.get(cv2.CAP_PROP_FRAME_WIDTH)),
                      int(input_stream.get(cv2.CAP_PROP_FRAME_HEIGHT)))
        self.frame_count = int(input_stream.get(cv2.CAP_PROP_FRAME_COUNT))
        if args.crop_width and args.crop_height:
            crop_size = (args.crop_width, args.crop_height)
            frame_size = tuple(np.minimum(frame_size, crop_size))
        log.info("Input stream info: %d x %d @ %.2f FPS" % \
            (frame_size[0], frame_size[1], fps))
        output_stream = Visualizer.open_output_stream(args.output, fps, frame_size)

        self.process(input_stream, output_stream)

        # Release resources
        if output_stream:
            output_stream.release()
        if input_stream:
            input_stream.release()

        cv2.destroyAllWindows()

    @staticmethod
    def open_input_stream(path):
        log.info("Reading input data from '%s'" % (path))
        stream = path
        try:
            stream = int(path)
        except ValueError:
            pass
        return cv2.VideoCapture(stream)

    @staticmethod
    def open_output_stream(path, fps, frame_size):
        output_stream = None
        if path != "":
            if not path.endswith('.avi'):
                log.warning("Output file extension is not 'avi'. " \
                        "Some issues with output can occur, check logs.")
            log.info("Writing output to '%s'" % (path))
            output_stream = cv2.VideoWriter(path,
                                            cv2.VideoWriter.fourcc(*'MJPG'), fps, frame_size)
        return output_stream


def main():
    args = build_argparser().parse_args()

    log.basicConfig(format="[ %(levelname)s ] %(asctime)-15s %(message)s",
                    level=log.INFO if not args.verbose else log.DEBUG, stream=sys.stdout)

    log.debug(str(args))

    visualizer = Visualizer(args)
    visualizer.run(args)


if __name__ == '__main__':
    main()
4)编写批处理文件:

由于有两个摄像头,可以同时调用,但由于CPU不支持openvino,而且只有一根NCS2神经棒,所以只单独调用了一个摄像头。否则可以两个摄像头同时调用,或按照时间来调用,白天调用普通摄像头,晚上调用红外摄像头,持续进行搜索。
run01.bat批处理文件:
python face_recognition_demo.py ^
-m_fd .\models\face-detection-adas-0001.xml ^
-m_lm .\models\landmarks-regression-retail-0009.xml ^
-m_reid .\models\face-reidentification-retail-0095.xml ^
-fg "classroom" ^
-i 0 ^
-t_fd 0.3 ^
-t_id 0.8 ^
-d_fd MYRIAD ^
-d_lm MYRIAD ^
-d_reid MYRIAD ^
--allow_grow


run02.bat批处理文件:
python face_recognition_demo.py ^
-m_fd .\models\face-detection-adas-0001.xml ^
-m_lm .\models\landmarks-regression-retail-0009.xml ^
-m_reid .\models\face-reidentification-retail-0095.xml ^
-fg "classroom" ^
-i 1 ^
-t_fd 0.3 ^
-t_id 0.8 ^
-d_fd MYRIAD ^
-d_lm MYRIAD ^
-d_reid MYRIAD ^
--allow_grow

说明-i 0代表调用红外摄像头,-i 1代表调用普通RGB摄像头。


4.事先准备待搜寻的人物图片作为基准图片放入classroom文件夹:

这里我们用物理大师爱因斯坦的经典照片作为测试,注意放在这个文件夹的是基准图片,后面运行时,摄像头对着的是另外一张照片。
A8.jpeg
5.硬件连接好:
A6.jpeg
6.运行测试:
A9.jpeg
可以看到检测到的视频图像与基准图片相似度超过设置的70%阀值,就触发了报警提示。在基准文件夹中没有找到的人脸标签显示unknow。





7.演示运行视频地址:
https://v.qq.com/x/page/d31556mq4a6.html


8.总结:
双目摄像头能很好地完成人工智能识别的工作,可以广泛运用到多个实际场景。特别是红外摄像头和RGB摄像头的组合能完成一些特定环境的昼夜监测要求。如果后续能增加自带景深深度识别的功能就更好了,可以进一步扩大适用场景。





梵天 2020-9-30 19:26:05
本文涉及敏感技术,在禁止出口!
1 回复

举报

只有小组成员才能发言,加入小组>>

95个成员聚集在这个小组

加入小组

创建小组步骤

关闭

站长推荐 上一条 /9 下一条

快速回复 返回顶部 返回列表