完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
手持式仪器是嵌入式系统应用开发的重要领域,手持式仪器具有便于携带、操作方便、LCD显示清晰等优点[1]。本文结合手持式电量测量仪开发项目,设计了以MSP430F449为核心的手持式仪器。系统采用16位A/D转换器AD7705和128×64像素LCD图形显示器设计互动式图形用户界面,用于显示测量结果数字和图形。符合人体工程学的按键和易于操作的菜单,实现了仪器的4按键图形菜单操作。设计了对测量数据进行分析处理并实时存储的应用软件。仪器具有测量精度高、数据处理能力强、信息容量大、智能化、体积小、功耗低等特点,适合于电池供电的工作环境。
|
|
相关推荐
2个回答
|
|
1 核心模块硬件设计
1.1 16位嵌入式处理器MSP430F449单片机 德州仪器公司的。MSP430[2-3]系列单片机是一种16位超低功耗微处理器,低供电电压范围为1_8~3.6 V,1 MHz时钟运行时耗电电流在0.1~400μA之间,并具有多种低功耗模式,关断模式下耗电仅为0.1μA;从中断请求到CPU唤醒只要6 μs;具有丰富的片内资源。本系统中选用的是MSP430F449单片机,该单片机具有5种节电模式(LPMO~LPM4),1 MHz下工作电流0.1~280μA,具有2个16位和1个8位定时器;具有1个12位A/D转换器,2个串行通信接口,可通过软件选择UART/SPI模式;Flash存储器多达60 KB,RAM多达2 KB。 手持式仪器核心模块基本组成的硬件电路框图如图1所示。 1.2 FIash数据存储器 由于系统要存放大量的数据,因此需要大容量的存储芯片。可选用的存储芯片主要有EEFPROM、Flash、FRAM等类型。FRAM存储器虽然擦写次数无限制但其价格昂贵,EEPROM、Flash型存储芯片虽有擦写次数的限制但价格较低,其中Flash存储容量更大。本文选用AT45DB041B[4]串行Flash芯片作为数据存储器。AT45DB041B与AT45DB041、AT45DB041A完全兼容,但供电电压更低,为2.5~3.6 V或者2.7~3.6 v,功耗更低,且封装尺寸和引脚数更少。该存储器主存储页容量为4 Mb,共分为2 048页,每页容量为264字节,此外还具有2个264字节的缓存(BUFFERl、BUFFER2),在主存被编程时仍可接收数据。它采用SPI串口模式0~3可与任何单片机或微机进行通信,几乎无需外接元器件。电路开发较为简单,而且数据存储量大,安全性较好。 1.3 16位A/D转换器AD7705[5] 模数转换器选择ADI公司的16位∑-△A/D转换器AD7705。该器件提供双三通道、低成本、高分辨率的模数转换功能。由于采用∑-△结构并具有可编程增益放大器,应用于低频测量的模拟前端,可以直接接收来自传感器的低电压输入信号,实现16位无丢失代码并产生串行的数字输出。当电源电压为3.3 V,基准电压为1.225 V时,可处理0~1.0 mV或0~1.225 V的单极性模拟输入信号;双极性模拟输入信号范围是±10 mV及±1.225 V,无需外部仪表放大器,简化了仪器硬件电路的设计。AD7705工作电压为2.7~3.3 V,与系统CPUMSP430F449的3.3 V端口电压兼容,可直接与MSP430F449连接。AD7705的CMOS功耗极低,3 V电压时最大功耗为1 mw。器件带有节电模式,方便电池供电。AD7705能确保14位的准确度,分辨率达到小数点后4位,满足系统对测量数据小数点后3位的准确性要求。在本仪器核心电路设计中,采用MSP430F449的并行口模拟SPI串行口时序,实现对AD7705的操作。在AD7705的PCB设计时,应避免在器件下布置数字信号线,否则会导致片内噪声成倍增加。同时,应注意模拟地与和数字地在一点接地。 1.4 128×64 LCD显示器 液晶模块选用北京青云创新科技发展公司的LCM128645ZK液晶模块,显示内容为128×64点阵,外形尺寸为93 mm×70 mm×13 mm,视域尺寸为70.7 mm×38.8 mm,显示类型为STN黄绿模式,正向显示,控制器为ST7920,工作电压3.3 V,和微处理器供电电压兼容。该模块自带8 000多GBl、GB2中文汉字字库,具有8位、4位并行编程模式和3线串行编程模式。引脚定义如表1所列。串行编程模式下所需I/O口线少,硬件连接简单。本系统即采用串行编程模式。 |
|
|
|
2 核心模块通用功能函数设计
核心模块设计了通用功能函数,便于编写应用程序时调用。通用功能函数在IAR Embedded Workbench环境下采用C语言设计开发。 2.1 Flash数据存储器函数设计 系统采用MSP430F449的P3口对Flash存储器AT45DB041B进行控制,它和MSP430F449的连接如图2所示。P3.6连接片选端,P3.5连接串行时钟端,P3.4连接串行数据输入端,P3.3连接串行数据输出端,配合P3.0和P3.1的操作实现对存储器的读写等操作。(编者注:部分核心函数见本刊网站。) 2.2 核心模块LCD显示函数设计 在系统内,单片机MSP430F449通过P5口与液晶模块LCM128645ZK串行通信,P5.7接液晶的RS(CS)端,P5.6接液晶的R/W(STD)端,P5.5接液晶的SCLK端,如图3所示。P4.7通过1个三极管构成开关电路来控制液晶是否供电,达到系统最低功耗的目的。(编者注:部分关键函数的设计见本刊网站。) 2.3核心模块A/D转换函数设计 在系统内,单片机.MSP430F449与AD7705的接线原理如图4所示,P2.0连接SCLK端,P2.1连接CS选择端,P2.2连接DIN端,P2.3连接DOUT端,P2.4连接DRDY端,2路输人采用差分输入方式。通过访问AD7705的8个寄存器实现对AD7705的所有操作: ①通信寄存器。所有对器件的通信必须从写通信寄存器开始。上电或复位后,默认为等待指令,写入通信寄存器。由通信寄存器选择位RS2~RS0指定下次访问的寄存器。R/w位选择下次是读操作还是写操作,输入通道选择位CH1、CH0选择输入模拟通道。 ②设置寄存器。可读/写的8位寄存器,用于设置工作模式、增益、极性、缓冲器控制和滤波器同步。③时钟寄存器。可读/写的8位寄存器,用于设置有关AD7705运行频率参数和A/D转换输出更新速率。 ④数据寄存器。16位只读寄存器,存放AD7705最新的转换结果。 ⑤测试寄存器、零标度校准寄存器、满标度校准寄存器等。用于测试和存放校准数据,可用来分析噪声和转换误差。 部分核心函数如下: 2.4 核心模块电源设计 电源设计是手持式仪器系统设计的难点,本课题权衡低功耗、低成本、稳定可靠等诸多因素。由电源芯片IM1117-3.3提供MSP430F449微处理器的集成I/O和Flash、A/D、128×64像素LCD等外设的工作电源;LMlll7-5超低压降线性稳压电源芯片实现电池电压到5 V的转换,并由HZD05-12D12模块为前端传感器提供±12 V电源。其中HZD05-12D12为双路输出,均衡负载直流一直流双输出模块,输入电压范围9~18 V,输出电压±12 V,额定输出电流±O.21 A。系统电源电路如图5所示。 该电路可以满足系统不同部件的供电需求。仪器由外接Ac电源变换/充电器或内置12.6 V的锂电池组供电。 结 语 本文讨论手持式仪器核心电路的硬件和软件设计。采用MSP430F449作为手持式仪器的控制核心,用LCMl28645ZK LCD模块作为仪器显示器。采用16位A/D转换器AD7705,设计多通道、高性能、高精度的测量部件。手持式仪器核心电路还设计了可提供3.3 V、5V、±12 V的4路电压的电源模块。此手持式仪器核心电路系统已用于手持式电量测量仪中。实践证明,该系统具有手持式使用、测量精度高、数据处理能力强、功耗低、电池供电等特点。本文介绍的MSP430的手持式仪器核心模块硬件软件具有通用性,可直接应用于手持式仪器中。 |
|
|
|
只有小组成员才能发言,加入小组>>
771 浏览 0 评论
1146 浏览 1 评论
2527 浏览 5 评论
2858 浏览 9 评论
移植了freeRTOS到STMf103之后显示没有定义的原因?
2709 浏览 6 评论
keil5中manage run-time environment怎么是灰色,不可以操作吗?
1054浏览 3评论
189浏览 2评论
453浏览 2评论
364浏览 2评论
M0518 PWM的电压输出只有2V左右,没有3.3V是怎么回事?
449浏览 1评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-18 13:16 , Processed in 0.996898 second(s), Total 53, Slave 43 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号