6、眼图与存储深度
通常眼图是由若干个比特(UI)组成,考虑到眼图测试的精度和稳定性,一般都要求累积到足够的UI数再分析,这个就涉及到示波器的存储深度。越高的存储深度,示波器一次分析的UI数就会越多,测试结果也就越精准。因此在测量高速信号的眼图和抖动中,尽量采用高的存储深度。当然存储深度越高,示波器的分析速度相对也会变慢。
下图是Keysight实时示波器动态显示实时眼图的累积情况。眼图的左上角会显示累积的UI数以及示波器捕获的波形数。
满足等式:UI数 = 存储深度/采样率信号速率
7、实时的眼图表现
另外,眼图既然是实时波形的叠加,对于眼图的分析也应该具有实时性。下图是Keysight实时示波器测出的眼图,在示波器窗口中能看到上半部窗口是实时波形的显示,下半部窗口是实时眼图的显示。这种同步实时性的显示功能可以让工程师更直观地对波形和眼图进行观察,更好地进行分析和调试工作。这种功能也是作为仪器厂商目前唯一支持的。
8、快速眼图的测量 (一键式眼图测量)
当我们需要测量眼图时,需要先进行一系列的设置后才能形成波形的眼图,比如波形的大小调整、信号速率的设定以及阈值的设定等。对于一些关心测试效率或者需要做大量的信号眼图测试的用户来说,他们更希望可以最简单化地进行眼图的测量,不用因为信号速率或者幅度不同每次都要重新进行眼图设置。是德科技示波器的软件不断创新和优化,增加了非常多的人性化功能。对于眼图的测量,我们只需要通过鼠标或者触摸屏控制,一键式点击就可以快速地基于实时波形形成出眼图,为用户提供了非常便捷地方式。
下图是我们针对一个10Gbps的高速信号,进行快速眼图测量,当波形显示出来后,只要点击Analyze菜单下面的“Quick Eye Diagrams”就可以快速地形成信号的眼图。
9、Eye Contour 误码率眼图
现在对高速信号的眼图测量要求越来越高,以前工程师在测量眼图的时候,可能在捕获时间上有多有少的自行定义,来看眼睛的高度和宽度或者抖动等。现在很多的接口规范开始要求在一定误码率下来评估眼高和眼宽等,比如在OIF-CEI的标准里对28Gbps信号的眼高眼宽要求,就定义在1e-15的误码率下。
下图是对V by One的信号进行眼图测量,该总线规范也要求了误码率1e-9下的眼图。在下面的眼图结果中可以看到不同误码率下的眼图轮廓,红色线就是误码率1e-9的眼图轮廓。
在数字电路系统中,发送端发送出多个比特的数据,由于多种因素的影响,接收端可能会接收到一些错误的比特(即误码)。错误的比特数与总的比特数之比称为误码率,即Bit Error Ratio,简称 BER。误码率是描述数字电路系统性能的最重要的参数。在 GHz 比 特率的通信电路系统中(比如 Fibre Channel、PCIe、SONET、SATA),通常要求 BER 小于或等于10^12。误码率较大时,通信系统的效率低、性能不稳定。影响误码率的因素包括抖动、噪声、信道的损耗、信号的比特率等。
在误码率(BER)的测试中,码型发生器会生成数十亿个数据比特,并将这些数据比特发送给输入设备,然后在输出端接收这些数据比特。然后,误码分析仪将接收到的数据与发送的原始数据一位一位进行对比,确定哪些码接收错误,随后会给出一段时间内内计算得到的 BER。考虑误码率测试的需要,我们以下面的实际测试眼图为参考,以生成 BER图,参考眼图如下所示:
BER 图是样点时间位置 BER(t)的函数,称为 BERT 扫描图或浴缸曲线。简而言之,它 是在相对于参考时钟给定的额定取样时间的不同时间 t 上测得的 BER。参考时钟可以是信 号发射机时钟,也可以是从接收的信号中恢复的时钟,具体取决于测试的系统。以上述的眼图为参考,眼睛张开度与误码率的关系以及其 BER 图如下:
10、Multi-ChannelEye Measurement(多通道眼图测量)
Multi-Channel Eye Measurement 多通道眼图测量功能。 |