完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
一、时域与空域特性
以远场模型(平面波)为例,假设均匀线阵接收的为窄带信号,假设相邻振元间隔为d,入射角θ为: 从空域坐标来看,相邻振元的间隔为:dsinθ 等价到时间轴来看,采样点的间距为:dsinθ,对应时间间隔为: |
|
相关推荐
2个回答
|
|
二、时、空域与采样定理
A、空域角度理解 相邻振元的相位差为: 以干涉仪为例,如果存在相位模糊,有 k为非零整数,如果希望不出现相位模糊 对应扫描边界,则有 容易证明,同干涉仪一样,均匀线阵谱估计中的导向矢量,如果不满足上面的约束条件,同样会有多峰的问题。 B、时域角度理解 前文提到,采样点对应的时间间隔为,即采样周期。空域均匀线阵对应时域均匀采样,采样频率: 入射信号的频率为: 如果采样无混叠,需要满足Nyquist采样定理: 该约束条件等价于: 可以看出均匀线阵的相位无模糊对应时域均匀采样的奈奎斯特定理。多说一句,如果是非均匀线阵、圆阵等形式,可以理解成对应维度的非均匀采样;从空域角度理解,非均匀阵列可以解决模糊问题,从时域角度理解,稀疏采样/非均匀采样可以突破奈奎斯特采样定理。 |
|
|
|
三、时、空域及功率谱
波束形成主要对感兴趣的方向进行增强/抑制,而谱估计更多是参数估计问题,前者操作多为主动,后者操作多为被动,MVDR算法对二者均适用。这里暂且抛开应用场景,仅从时、空角度理解功率谱的”谱”特性。 接着上文的时域、空域思路,这里先从时域的角度来表述,为了简化均不考虑加窗情形。 A、时域角度理解 对于N点均匀采样的信号uN(n),对其进行傅里叶变换: uN(n)的相关函数为: 容易证明有如下对应关系: 而相关函数对应的傅里叶变换为功率谱密度,可以求解功率谱密度: B、空域角度理解 N个均匀线阵接收单元,对应的波束形成为: 即空域的波束形成可以理解为时域的傅里叶变换, 从而空域的功率谱密度可以等价为: 考虑到时域、空域具有等价性,空域的功率谱这么理解是合理的。 现在以常用的MVDR算法来理解这种等价性: 接收信号: MVDR就是含有等式约束的最优化问题: 可以求解: 这个时候,如果将最优的w带入y,空域角度理解:y对应就是波束形成的结果。时域角度理解:y对应为傅里叶变换的结果。 通常MVDR的结果为E[y*y]的输出,根据上文分析可知,该结果从时域理解就是功率谱(差一个常数),所以从空域角度称作“谱”其实也是可以被接受的,对应功率(谱): 因为这是在空域,为了与时域功率谱的名字加以区别,可以称其为空间谱。 具体空间谱名称怎么由来,本文并没有考证。本文只是提供了一种理解“空间谱”名称的角度,至少MUSIC等算法的“谱”便与此不同,或许MUSIC等算法只是继承了“空间谱”这个名词也未可知。 |
|
|
|
只有小组成员才能发言,加入小组>>
4652个成员聚集在这个小组
加入小组17626.6标准中关于CDN的疑问?以及实际钳注入测试中是否需要对AE和EUT同时接CDN?
6927 浏览 1 评论
3728 浏览 2 评论
10385 浏览 1 评论
3898 浏览 4 评论
3601 浏览 0 评论
822浏览 0评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-23 10:39 , Processed in 1.514328 second(s), Total 85, Slave 67 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号