既然说到了参考平面的处理,其实应该属于叠层设计的范畴了。 PCB的叠层设计不是层的简单堆叠,其中地层的安排是关键,它与信号的安排和走向有密切的关系。多层板的设计和普通的PCB相比,除了添加了必要的信号走线层之外,最重要的就是安排了独立的 电源和地层(铺铜层)。 在高速数字电路系统中,使用电源和地层来代替以前的电源和地总线的优点主要在于:1)为数字信号的变换提供一个稳定的参考电压。 2)均匀地将电源同时加在每个逻辑器件上。 3)有效地抑制信号之间的串扰。 其原因在于,使用大面积铺铜作为电源和地层大大减小了电源和地的电阻,使得电源层上的电压均匀平稳,而且可以保证每根信号线都有很近的地平面相对应,这同时也减小了信号线的特征阻抗,也可有效地减少串扰。所以,对于某些高端的高速电路设计,已经明确规定一定要使用6层(或以上的)的叠层方案,如Intel对PC133内存模块PCB的要求。这主要就是考虑到多层板在电气特性,以及对电磁辐射的抑制,甚至在抵抗物理机械损伤的能力上都明显优于低层数的PCB。 一般情况下均按以下原则进行叠层设计:满足信号的特征阻抗要求;满足信号回路最小化原则;满足最小化PCB内的信号干扰要求;满足对称原则。具体而言在设计多层板时需要注意以下几个方面: 1)一个信号层应该和一个敷铜层相邻,信号层和敷铜层要间隔放置,最好每个信号层都能和至少一个敷铜层紧邻。信号层应该和临近的敷铜层紧密耦合(即信号层和临近敷铜层之间的介质厚度很小)。 2)电源敷铜和地敷铜应该紧密耦合并处于叠层中部。缩短电源和地层的距离,有利于电源的稳定和减少EMI。尽量避免将信号层夹在电源层与地层之间。电源平面与地平面的紧密相邻好比形成一个平板电容,当两平面靠的越近,则该电容值就越大。该电容的主要作用是为高频噪声(诸如开关噪声等)提供一个低阻抗回流路径,从而使接收器件的电源输入拥有更小的纹波,增强接收器件本身的性能。 3)在高速的情况下,可以加入多余的地层来隔离信号层,多个地敷铜层可以有效地减小PCB的阻抗,减小共模EMI。但建议尽量不要多加电源层来隔离,这样可能造成不必要的噪声干扰。 4)系统中的高速信号应该在内层且在两个敷铜之间,这样两个敷铜可以为这些高速信号提供屏蔽作用,并将这些信号的辐射限制在两个敷铜区域。5)优先考虑高速信号、时钟信号的传输线模型,为这些信号设计一个完整的参考平面,尽量避免跨平面分割区,以控制特性阻抗和保证信号回流路径的完整。 6)两信号层相邻的情况。对于具有高速信号的板卡,理想的叠层是为每一个高速信号层都设计一个完整的参考平面,但在实际中我们总是需要在PCB层数和PCB成本上做一个权衡。在这种情况下不能避免有两个信号层相邻的现象。目前的做法是让两信号层间距加大和使两层的走线尽量垂直,以避免层与层之间的信号串扰。 7)铺铜层最好要成对设置,比如六层板的2、5层或者3、4层要一起铺铜,这是考虑到工艺上平衡结构的要求,因为不平衡的铺铜层可能会导致PCB的翘曲变形。 8)次表面(即紧靠表层的层)设计成地层,有利于减小EMI。 9)根据PCB器件密度和引脚密度估算出所需信号层数,确定总层数。 板层的结构是决定系统的EMC性能一个很重要的因素。一个好的板层结构对抑制PCB中辐射起到良好的效果。在现在常见的高速电路系统中大多采用多层板而不是单面板和双面板。下面分别就四层板、六层板、八层板、十层板的板层结构设计做一简单的说明。 四层板设计 表1 四层板叠层设计示例
一般来说,对于较复杂的高速电路,最好不采用四层板,因为它存在若干不稳定因素,无论从物理上还是电气特性上。如果一定要进行四层板设计,则可以考虑设置为:电源-信号-信号-地。还有一种更好的方案是:外面两层均走地层,内部两层走电源和信号线。这种方案是四层板设计的最佳叠层方案,对EMI有极好的抑制作用,同时对降低信号线阻抗也非常有利,但这样布线空间较小,对于布线密度较大的板子显得比较困难。 六层板设计现在很多电路板都采用六层板技术,比如内存模块PCB的设计,大部分都采用六层板(高容量的内存模块可能采用10层板)。最常规的六层板叠层是这样安排的:信号-地-信号-信号-电源-信号。从阻抗控制的观点来讲,这样安排是合理的,但由于电源离地平面较远,对较小共模EMI的辐射效果不是很好。如果改将敷铜区放在3和4层,则又会造成较差的信号阻抗控制及较强的差模EMI等问题。还有一种添加地平面层的方案,布局为:信号-地-信号-电源-地-信号,这样无论从阻抗控制还是从降低EMI的角度来说,都能实现高速信号完整性设计所需要的环境。但不足之处是层的堆叠不平衡,第3层是信号走线层,但对应的第4层却是大面积敷铜的电源层,这在PCB工艺制造上可能会遇到一点问题,在设计时可以将第3层所有空白区域敷铜来达到近似平衡结构的效果。 表2 六层板叠层设计示例
下面就表2中所列四种6层板结构做一说明。 A:第2和第5层为电源和地敷铜,由于电源敷铜阻抗高,对控制共模EMI辐射非常不利。不过,从信号的阻抗控制观点来看,这一方法却是非常正确的。因为这种板层设计中,信号走线层的Layer1和Layer3,Layer4和Layer6构成了两对较为合理的走线组合。 B:将电源和地分别放在第3和第4层,这一设计解决了电源敷铜阻抗问题,由于第1层和第6层的电磁屏蔽性能差,增加了差模EMI。如果两个外层上的信号线数量最少,走线长度很短(短于信号最高谐波波长的1/20),则这种设计可以解决差模EMI问题。将外层上的无 元件和无走线区域敷铜填充并将敷铜区接地(每1/20波长为间隔),则对差模EMI的抑制特别好。 C:从信号的质量角度考虑,很显然这种板层安排最为合理的。因为这样的结构对信号高频回流的路径是比较理想的。但是这样安排有个比较突出的缺点,即信号的走线层少。所以这样的系统适用于高性能的要求。 D:这可实现信号完整性设计所需要的环境。信号层与接地层相邻,电源层和接地层配对。显然,不足之处是层的结构不平衡(不平衡的敷铜可能会导致PCB的翘曲变形)。解决问题的办法是将第3层所有的空白区域敷铜,敷铜后如果第3层的敷铜密度接近于电源层或接地层,这块板可以不严格地算作是结构平衡的电路板。敷铜区必须接电源或接地。 八层板设计表3 八层板叠层示例
现在使用的八层板多数是为了提高六层板的信号质量而设计的。由表3中可以知道,八层板相比六层板并没有增加信号的走线层,而是多了两个敷铜层,所以可以优化系统的EMC性能。 十层板设计表4 十层板叠层示例
十层的PCB绝缘介质层很薄,信号层可以离地平面很近,这样就非常好地控制了层间的阻抗变化,一般只要不出现严重的叠层设计错误,设计者都能较容易地完成高质量的高速电路板设计。如果走线非常复杂,需要更多的走线层,我们可以将叠层设置为:信号-信号-地-信号-信号-信号-信号-电源-信号-信号。当然这种情况不是最理想的,我们要求信号走线能在少量的层中布完,而是用多余的地层来隔离其他信号层,所以更通常的叠层方案是:信号-地-信号-信号-电源-地-信号-信号-地-信号。可以看到,这里使用了三层地平面层,而只用了一层电源(我们只考虑单电源的情况)。这是因为,虽然电源层在阻抗控制上的效果和地平面层一样,但电源层上的电压受干扰较大,存在较多的高阶谐波,对外界的EMI也强,所以和信号走线层一样,是最好被地平面屏蔽起来的。同时,如果使用多余的电源层来隔离,回路电流将不得不通过去耦电容来实现从地平面到电源平面的转换。这样,在去耦电容上过多的电压降会产生不必要的噪声。
其实在叠层设计时还是需要灵活运用上述原则的。有时并不能同时满足所有原则或者将所有原则应用到最佳,这就需要根据实际的系统要求选择确定适当的板层结构。
|