完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
本帖最后由 办公设备 于 2014-10-14 10:52 编辑
自1987年Yablonovitch和John分别独立提出光子晶体的概念以来,光子晶体的理论和实验研究以及相关应用得到了迅速的.迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,并且随着半导体微加工技术的进步和发展,人们对这些器件开展了深入系统的实验研究.这些光子晶体光学器件使信息处理技术的“全光子化”和光子技术的“微型化”与“集成化”成为可能.简单地说,光子晶体是折射率或介电常数具有周期性调制分布的一种新型人工光学或电磁波材料,其周期为波长量级.虽然界也存在天然形成的光子晶体,比如石英材料的蛋白石光子晶体(opal),但是具有实际应用价值的光子晶体都来源于人工设计和制造,通常利用当今先进的半导体微加工技术,比如电子束刻蚀技术和聚焦离子束刻蚀技术, 其精度可优于5nm,基本能够满足光子晶体集成光电子器件产品sinosvo.cn/sell/1083的精确制作和加工要求,使得这些器件的光学特性基本符合机设计的预期结果,从而实现理论和实验的良好互动. 与传统半导体类似,光在光子晶体中传播时,受到周期点阵的布拉格散射而产生光子能带和光子带隙.利用光子带隙的存在能够实现对光传播行为的强有力控制.这主要通过在光子晶体中引入各种缺陷而实现光子的局域化控制.缺陷有两种基本形式:线缺陷和点缺陷.线缺陷形成波导,它可以引导光子沿某一路径传输.由于光子带隙的存在,光只能沿着光子晶体波导延伸方向传播,而不能泄露到周围的光子晶体材料里. 1996年,美国麻省理工学院的J.D.Joannopoulos小组在物权威杂志Physical Review Letters上发表了一篇理论研究工作[1],指出光通过90°的光子晶体波导转弯角时,在某些频率窗口能够获得接近100%的传输效率,理论计算的结果如图1所示.随后该小组与美国Sandia国家实验室的Shawn-Yu Lin等合作,开展了微波波段的实验研究工作,证实了理论预言的结果[2].该实验结果如图2所示.在这一点上, 光子晶体波导具有传统介质波导(如光纤)无可比拟的优势. 由于传统介质波导通过光在芯层和包层之间的分界面处的全反射效应来实现传输,当光遇到大的转弯角(比如大于30°)时,全反射条件不再满足,相当比例的光能量将从转弯角处泄露到周围空间中去. 上述的研究工作表明,光子晶体波导能够在微纳尺度上实现对光的高效率偏转.受到该研究成果的激励,许许多多应用于不同光频段,着眼于更低损耗?更宽传播窗口,以及一些具有特殊用途(如光速变慢)的光子晶体直线波导得到了广泛的研究. 光子晶体中的另一种缺陷形式——点缺陷通常用来构成光子晶体结构中的微腔,在微腔中只有频率与之共振的光子才能存在,形成一个或多个共振模式,因此微腔具有共振选频的作用.波导与微腔配合使用,构成了集成光学基本元件.1998年,美国麻省理工学院的S. Fan等借鉴模式耦合理论,提出了由光子晶体波导与微腔构成的通道上传/下载滤波器(channel drop filters)的基本概念[3].该器件由两条光子晶体单模波导和中间放置的两个全同耦合微腔构成,通过合理地选择微腔的几何构形和物理参数,能够控制波导模式与两个耦合微腔的耦合方式,使得在直线波导主干通道上传播的光信息通过共振隧穿机制而高效率(接近100%)地下载到旁支信息通道上.利用光子晶体波导和微腔的耦合作用,日本京都大学的S.Noda小组于2000年制作出了基于InGaAsP材料的应用于近红外波段的面发射下转换型滤波器[4].此后一系列的关于多通道共振滤波器工作便开展了起来,目标是构建基于光子晶体的密集波分复用器件,以实现微纳尺度上的光信息传输和处理. 光子晶体中带隙的调控作用还体现在对光源的改善上,早在1987年,Yablonovitch就预见了光子晶体点缺陷形成激光器的可能[5].大体说来就是将光信号设计在导带区域,使其能够透过晶体继续传播,而噪声落入带隙区域被完全屏蔽,从而获得超过传统光源的高单色性激光输出.12年后,美国加州理工学院的A.Scherer研究小组首次实现了室温下抽运的光子晶体纳米激光器[6],翻开了世界范围光子晶体激光器研究工作实用化的新一页.该小组在包含有多层量子阱结构的砷化镓桥式薄膜上制作了光子晶体微腔, 利用局域缺陷模的高品质因子,为量子阱结构发光提供了反馈机制,从而实现了具有亚波长尺度的模式体积的纳米激光器.近年来,各种基于光子晶体的有源与无源器件在微纳米加工技术的支持下层出不穷,它们的出现提供了构成光子晶体集成光学回路的基本功能单元. |
|
相关推荐 |
|
2180 浏览 0 评论
1349 浏览 1 评论
4256 浏览 2 评论
2935 浏览 0 评论
这是汽车360全景控制器上的主板,请问圆圈中的原件是什么,起什么作用?
2678 浏览 0 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-11-24 15:05 , Processed in 0.535676 second(s), Total 44, Slave 34 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号