CPU、GPU遵循的是冯·诺依曼体系结构,指令要经过存储、译码、执行等步骤,共享内存在使用时,要经历仲裁和缓存。
而FPGA和ASIC并不是冯·诺依曼架构(是哈佛架构)。以FPGA为例,它本质上是无指令、无需共享内存的体系结构。
FPGA的逻辑单元功能在编程时已确定,属于用硬件来实现软件算法。对于保存状态的需求,FPGA中的寄存器和片上内存(BRAM)属于各自的控制逻辑,不需要仲裁和缓存。
从ALU运算单元占比来看,GPU比CPU高,FPGA因为几乎没有控制模块,所有模块都是ALU运算单元,比GPU更高。
所以,综合各个角度,FPGA的运算速度会比GPU更快。
再看看功耗方面。
GPU的功耗,是出了名的高,单片可以达到250W,甚至450W(RTX4090)。而FPGA呢,一般只有30~50W。
这主要是因为内存读取。GPU的内存接口(GDDR5、HBM、HBM2)带宽极高,大约是FPGA传统DDR接口的4-5倍。但就芯片本身来说,读取DRAM所消耗的能量,是SRAM的100倍以上。GPU频繁读取DRAM的处理,产生了极高的功耗。
另外,FPGA的工作主频(500MHz以下)比CPU、GPU(1~3GHz)低,也会使得自身功耗更低。FPGA的工作主频低,主要是受布线资源的限制。有些线要绕远,时钟频率高了,就来不及。
最后看看时延。
GPU时延高于FPGA。
GPU通常需要将不同的训练样本,划分成固定大小的“Batch(批次)”,为了最大化达到并行性,需要将数个Batch都集齐,再统一进行处理。
FPGA的架构,是无批次(Batch-less)的。每处理完成一个数据包,就能马上输出,时延更有优势。
那么,问题来了。GPU这里那里都不如FPGA和ASIC,为什么还会成为现在AI计算的大热门呢?
很简单,在对算力性能和规模的极致追求下,现在整个行业根本不在乎什么成本和功耗。
在英伟达的长期努力下,GPU的核心数和工作频率一直在提升,芯片面积也越来越大,属于硬刚算力。功耗靠工艺制程,靠水冷等被动散热,反而不着火就行。
除了硬件之外,上篇文章小枣君也提到,英伟达在软件和生态方面很会布局。
他们捣鼓出来的CUDA,是GPU的一个核心竞争力。基于CUDA,初学者都可以很快上手,进行GPU的开发。他们苦心经营多年,也形成了群众基础。
相比之下,FPGA和ASIC的开发还是太过复杂,不适合普及。
在接口方面,虽然GPU的接口比较单一(主要是PCIe),没有FPGA灵活(FPGA的可编程性,使其能轻松对接任何的标准和非标准接口),但对于服务器来说,足够了,插上就能用。
除了FPGA之外,ASIC之所以在AI上干不过GPU,和它的高昂成本、超长开发周期、巨大开发风险有很大关系。现在AI算法变化很快,ASIC这种开发周期,很要命。
综合上述原因,GPU才有了现在的大好局面。
在AI训练上,GPU的算力强劲,可以大幅提升效率。
在AI推理上,输入一般是单个对象(图像),所以要求要低一点,也不需要什么并行,所以GPU的算力优势没那么明显。很多企业,就会开始采用更便宜、更省电的FPGA或ASIC,进行计算。
其它一些算力场景,也是如此。看重算力绝对性能的,首选GPU。算力性能要求不那么高的,可以考虑FPGA或ASIC,能省则省。
最后的话
关于CPU、GPU、FPGA、ASIC的知识,就介绍到这里了。
它们是计算芯片的典型代表。人类目前所有的算力场景,基本上都是由它们在负责。
随着时代的发展,计算芯片也有了新的趋势。例如,不同算力芯片进行混搭,互相利用优势。我们管这种方式,叫做异构计算。另外,还有IBM带头搞的类脑芯片,类似于大脑的神经突触,模拟人脑的处理过程,也获得了突破,热度攀升。以后有机会,我再和大家专门介绍。
希望小枣君的芯片系列文章对大家有所帮助。喜欢的话,求关注,求转发,求点赞。
感谢!