完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
model_deploy.py --mlir yolov5l.mlir --quantize INT8 --calibration_table yolov5l_cali_table --chip bm1684 --tolerance 0.85,0.45 --model yolov5l_bm1684_int8.bmodel
SOPHGO Toolchain v1.2.8-g32d7b3ec-20230802 2023/11/29 15:34:12 - INFO : load_config Preprocess args : resize_dims : [512, 512] keep_aspect_ratio : True keep_ratio_mode : letterbox pad_value : 0 pad_type : center input_dims : [512, 512] -------------------------- mean : [0.0, 0.0, 0.0] scale : [0.0039216, 0.0039216, 0.0039216] -------------------------- pixel_format : rgb channel_format : nchw 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 SourceURL:file:///home/jayen/下载/se5使用测试.docx ===group_idx: 13move tensor onnx::Pow_649_Mul from timestep 1 to timestep 6merge timestep 7 to timestep 6 merge timestep 8 to timestep 7 merge timestep 9 to timestep 8 merge timestep 10 to timestep 9 merge timestep 11 to timestep 10 ===group idx: 48 merge timestep 1 to timestep 0 ==---------------------------== Run GroupDataMoveOverlapPass : Overlap data move between two layer group ==---------------------------== GmemAllocator use FitFirstAssign [Success]: tpuc-opt yolov5l_bm1684_int8_sym_tpu.mlir --mlir-disable-threading --strip-io-quant="quant_input=False quant_output=False" --chip-tpu-optimize --weight-reorder --subnet-divide="dynamic=False" --op-reorder --layer-group="opt=2" --address-assign -o yolov5l_bm1684_int8_sym_final.mlir [Running]: tpuc-opt yolov5l_bm1684_int8_sym_final.mlir --codegen="model_file=yolov5l_1684_int8.bmodel" -o /dev/null bmcpu init: skip cpu_user_defined Cannot open libusercpu.so, disable user cpu layer. in cmodel, enable profile. FW INFO: D4 without w stride case FW INFO: D4 without w stride case FW INFO: D4 without w stride case FW INFO: n_slice 1, h_slice 24 FW INFO: D4 without w stride case FW INFO: n_slice 1, h_slice 64 ASSERT_FS /workspace/Sophgo/Codes/nntoolchain/TPU1684/firmware_core/src/atomic/atomic_tensor_arithmetic_fix8b_gen_cmd.c: atomic_tensor_arithmetic_fix8b_gen_cmd_: 140: tensor_dim[3] > 0 ASSERT info: none. Obtained 10 stack frames. /workspace/tpu-mlir_v1.2.8-g32d7b3ec-20230802/lib/libbackend_1684.so(print_trace+0x19) [0x7f2e6bb5e417] /workspace/tpu-mlir_v1.2.8-g32d7b3ec-20230802/lib/libbackend_1684.so(+0xc9740) [0x7f2e6b94c740] /workspace/tpu-mlir_v1.2.8-g32d7b3ec-20230802/lib/libbackend_1684.so(atomic_tensor_arithmetic_fix8b_gen_cmd_ext+0xad) [0x7f2e6b94d118] /workspace/tpu-mlir_v1.2.8-g32d7b3ec-20230802/lib/libbackend_1684.so(atomic_tensor_arithmetic_fix8b_gen_cmd+0xc8) [0x7f2e6b94d53d] /workspace/tpu-mlir_v1.2.8-g32d7b3ec-20230802/lib/libbackend_1684.so(+0x24c2f2) [0x7f2e6bacf2f2] /workspace/tpu-mlir_v1.2.8-g32d7b3ec-20230802/lib/libbackend_1684.so(general_binary_fix8b_local+0x414) [0x7f2e6bad0afa] /workspace/tpu-mlir_v1.2.8-g32d7b3ec-20230802/lib/libbackend_1684.so(+0x24f3ee) [0x7f2e6bad23ee] /workspace/tpu-mlir_v1.2.8-g32d7b3ec-20230802/lib/libbackend_1684.so(nodechip_broadcast_binary_fix8b_forward_local+0x570) [0x7f2e6bad2c81] tpuc-opt(+0x498648) [0x556568685648] tpuc-opt(+0x411079) [0x5565685fe079] Traceback (most recent call last): File "/workspace/tpu-mlir_v1.2.8-g32d7b3ec-20230802/python/tools/model_deploy.py", line 288, in tool.build_model() File "/workspace/tpu-mlir_v1.2.8-g32d7b3ec-20230802/python/tools/model_deploy.py", line 202, in build_model self.op_divide File "/workspace/tpu-mlir_v1.2.8-g32d7b3ec-20230802/python/utils/mlir_shell.py", line 154, in mlir_to_model _os_system(cmd) File "/workspace/tpu-mlir_v1.2.8-g32d7b3ec-20230802/python/utils/mlir_shell.py", line 50, in _os_system raise RuntimeError("[!Error]: {}".format(cmd_str)) RuntimeError: [!Error]: tpuc-opt yolov5l_bm1684_int8_sym_final.mlir --codegen="model_file=yolov5l_1684_int8.bmodel" -o /dev/null |
|
相关推荐
1个回答
|
|
从您提供的命令行输出看,可能是以下几个原因导致出错:
1. 参数错误:请确保输入的选项和参数正确并且完整。比如,`--quantize`选项需要一个值,这个值应为`INT8`。 2. 依赖库问题:确保您的环境中安装了正确的依赖库,并且版本兼容。yolov5需要的依赖库版本与您安装的版本是否一致。 3. 模型文件问题:您可能没有正确地指定模型文件路径或者模型文件损坏。请确保模型文件存在,并且文件路径正确。 4. 硬件兼容性问题:您所使用的硬件是否兼容INT8量化操作。如果您的硬件不支持INT8量化,可能会导致出错。请检查您的硬件文档或者与硬件提供商联系以确认硬件的兼容性。 5. 训练数据问题:量化过程中需要使用校准表(calibration table)来估计量化误差,以生成量化模型。请确保提供的校准表正确且与训练数据匹配。 如果您能提供更详细的错误信息或者日志输出,我可以提供更具体的帮助。 |
|
|
|
只有小组成员才能发言,加入小组>>
H264硬编码CVI_VENC_StartRecvFrame报错的原因?怎么解决?
566浏览 2评论
使用bm-smi查看信息时发现没有程序运行但是设备内存被占用是怎么回事?
321浏览 1评论
333浏览 1评论
SE5盒子如何修改IP?执行bm_set_ip提示没有该命令?
322浏览 1评论
663浏览 1评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-26 20:57 , Processed in 0.493343 second(s), Total 49, Slave 43 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号