(6)根据电原理图绘制印制电路板图的草图
首先要选定排版方向及确定主要元器件的位置。
当排版的方向确定以后,接下来首先是确定单元电路及其主要元器件,如晶体管、集成电路等的布设。然后再布设特殊元器件,最后确定对外连接的方式和位置。
原理图的绘制一般以信号流程及反映元器件在图中的作用为依据,因而再原理图中走线交叉现象很多,这对读图毫无影响,但在印制电路板中出现导线的交叉现象是不允许的,因此在排版中,首先要绘制单线不交叉图,可通过重新排列元器件位置与方向来解决。在较复杂的电路中,有时导线完全不交叉很困难的,这时可采用“飞线”来解决。“飞线”即是在印制电路板导线的交叉处切断一根,从板的元器件面用一根短接线连接。“飞线”过多,会影响元器件安装效率,不能算是成功之作,所以只有在迫不得以的情况下才使用。
3.印制电路板的布局
(1)整体布局
在进行印制电路板布局之前必须对电路原理图有深刻的理解,只有在彻底理解电路原理的基础上,才能做到正确、合理的布局。在进行布局时,要考虑到避免各级电路之间和元器件之间的相互干扰,这些干扰包括电场干扰——电容耦合干扰、磁场干扰——电感耦合干扰、高频和低频间干扰、高压和低压间干扰,还有热干扰等。在进行布局时,还要满足设计指标、符合生产加工和装配工艺的要求,要考虑到电路调试和维护维修的方便。对电路中的所用器件的电气特性和物理特征要充分了解,如元器件的额定功率、电压、电流、工作频率,元器件的物理特性,如体积、宽度、高度、外形等。印制电路板的整体布局还要考虑到整个板的重心平稳、元件疏密恰当、排列美观大方。
印制电路板上的元器件一般分为规则排列和不规则排列。
规则排列也叫整齐排列,即把元器件按一定规律或一定方向排列,这种排列由于受元器件位置和方向的限制,印制电路板导线的布线距离就长而且复杂,电路间的干扰也大,一般只在电路工作在低电压、低频(1MHz以下)的情况下使用。规则排列的优点是整齐美观,且便于进行机械化打孔及装配。
不规则排列也叫就近排列,由于不受元器件位置和方向的限制,按照电路的电气连接就近布局,布线距离短而简捷,电路间的干扰少,有利于减少分布参数,适合高频(30MHz以上)电路的布局。不规则排列的缺点是外观不整齐,也不便于进行机械化打孔及装配。
(2)元器件布局
对于单面印制电路板,元器件只能安装在没有印制电路的一面,元器件的引线通过安装孔焊接在印制导线的焊盘上。对于双面印制电路板,元器件也尽可能安装在板的一面,以便于加工、安装和维护。
在板面上的元器件应按照电原理图的顺序尽量成直线排列,并力求电路安装紧凑和密集,以缩短引线,减少分布电容,这对于高频电路尤为重要。
如果由于电路的特殊要求必须将整个电路分成几块进行安装,则应使每一块装配好的印制电路板成为具有独立功能的电路,以便于单独进行调试和维护。
为了合理地布置元器件、缩小体积和提高机械强度,可在主要的印制电路板之外再安装一块“辅助板”,将一些笨重元器件如变压器、扼流圈、大电容器、继电器等安装在辅助板上,这样有利于加工和装配。
布置元器件的位置时,应考虑它们之间的相互影响。元器件放置的方向应与相邻的印制导线交叉,电感器件要注意防止电磁干扰,线圈的轴线应垂直于板面,这样安装元件间的电磁干扰最小。
电路中有发热的元器件应放在有利于散热的位置,必要时可单独放置或加装散热片,以利于元器件本身的降温和减少对邻近元器件的影响。对大而重的元器件尽可能安置在印制电路板上靠近固定端的位置,并降低其重心,以提高整板的机械强度和耐振、耐冲击能力,以及减小印制电路板的负荷和变形。
(3) 印制导线的布设
1)地线的布设
①一般将公共地线布置在印制电路板的边缘,便于将印制电路板安装在机架上,也便于与机架(地)相连接。导线与印制电路板的边缘应留有一定的距离(不小于板厚),这不仅便于安装导轨和进行机械加工,而且还提高了电路的绝缘性能。
②在各级电路的内部,应防止因局部电流而产生的地阻抗干扰,采用一点接地是最好的办法。在电路各级间分别采取一点接地的原理示意图。但在实际布线时并不一定能绝对做到,而是尽量使它们安排在一个公共区域之内。
③当电路工作频率在30MHZ以上或是工作在高速开关的数字电路中,为了减少地阻抗,常采用大面积覆盖地线,这时各级的内部元器件接地也应贯彻一点接地的原则,即在一个小的区域内接地。
2)输入、输出端导线的布设
为了减小导线间的寄生耦合,在布线时要按照信号的流通顺序进行排列,电路的输入端和输出端应尽可能远离,输入端和输出端之间最好用地线隔开。由于输入端和输出端靠得过近,且输出导线过长,将会产生寄生耦合。
3)高频电路导线的布设
对于高频电路必须保证高频导线、晶体管各电极的引线、输入和输出线短而直,若线间距离较小要避免导线相互平行。高频电路应避免用外接导线跨接,若需要交叉的导线较多,最好采用双面印制电路板,将交叉的导线印制在板的两面,这样可使连接导线短而直,在双面板两面的印制线应避免互相平行,以减小导线间的寄生耦合,最好成垂直布置或斜交。
4)印制电路板的对外连接
印制电路板对外的连接有多种形式,可根据整机结构要求而确定。一般采用以下两种方法。
①用导线互连:将需要对外进行连接的接点,先用印制导线引到印制电路板的一端,导线应从被焊点的背面穿入焊接孔。
对于电路有特殊需要如连接高频高压外导线时,应在合适的位置引出,不应与其它导线一起走线,以避免相互干扰。
②用印制电路板接插式互连:印制电路板接插的簧片式互连,将印制电路板的一端制成插头形状,以便插入有接触簧片的插座中去。采用针孔式插头与插座的连接,在针孔式插头的两边设有固定孔与印制电路板固定,在插头上有90°弯针,其一端与印制电路板接点焊接,另一端可插入插座内。
5)印制连接盘
连接盘也叫焊盘,是指印制导线在焊接孔周围的金属部分,供外接引线焊接用。连接盘的尺寸取决于焊接孔的尺寸。焊接孔是指固定元器件引线或跨接线贯穿基板的孔。显然,焊接孔的直径应该稍大于焊接元器件的引线直径。焊接孔径的大小与工艺有关,当焊接孔径大于或等于印制电路板厚度时,可用冲孔;当焊接孔径小于印制电路板厚度时,可用钻孔。一般焊接孔的规格不宜过多。
连接盘的直径D应大于焊接孔内径d,一般取D=(2~3)d,为了保证焊接及结合强度。
连接盘的形状有不同选择,圆形连接盘用得最多,因为圆焊盘在焊接时,焊锡将自然堆焊成光滑的圆锥形,结合牢固、美观。但有时,为了增加连接盘的粘附强度,也采用正方形、椭圆形和长圆形连接盘。
6)印制导线
若焊盘与焊盘间的连线合为一体,犹如水上小岛,故称为岛形焊盘。岛形焊盘常用于元器件的不规则排列中,有利于元器件的密集和固定,并可大量减少印制导线的长度与数量。此外,焊盘与印制线合为一体后,铜箔面积加大,使焊盘和印制线的抗剥离强度大大增加。岛形焊盘多用在高频电路中,它可以减少接点和印制导线的电感,增大地线的屏蔽面积,减少接点间的寄生耦合。
设计印制电路板时,当元器件布局和布线初步确定后,就要具体地设计印制导线与印制电路板图形。这时必然会遇到印制线宽度、导线间距等等设计尺寸的确定以及图形的格式等问题。导线的尺寸和图形格式不能随便选择,它关系到印制电路板的总尺寸和电路性能。
7)定位孔的绘制与定位方法
①印制导线的宽度
一般情况下,印制导线应尽可能宽一些,这有利于承受电流和便于制造。0.05mm厚铜箔的导线宽度与允许电流和自身电阻大小的关系可以计算。
在决定印制导线宽度时,除需要考虑载流量外,还应注意它在板上的剥离强度以及与连接盘的协调,一般取线宽b=(1/3~2/3)D。一般的导线宽度可在0.3~2.0 mm之间,建议优先采用0.5mm、1.0mm、1.5mm、2.0mm规格,其中0.5mm导线宽度主要用于微小型化电子产品。
印制导线本身也具有电阻,当电流流过时将产生热量和产生电压降。印制导线的电阻在一般情况下可不予考虑,但当其作为公共地线时,为避免地线产生的电位差而引起寄生反馈时要考虑起阻值。
印制电路的
电源线和接地线的载流量较大,因此在设计时要适当加宽,一般取1.5~2.0mm。
当要求印制导线的电阻和电感比较小时,可采用较宽的信号线;当要求分布电容比较小时,可采用较窄的信号线。
②印制导线的间距:在一般情况下,导线的间距等于导线宽度即可,但不能小于1mm,否则在焊接元器件时采用浸焊方法就有困难。对微小型化设备,最小导线间距不小于0.4mm。导线间距的选择与焊接工艺有关,采用浸焊或波峰焊时,导线间距要大一些,采用手工焊接时,导线间距适当可小一些。
在高压电路中,相邻导线间存在着高电位梯度,必须考虑其影响。印制导线间的击穿将导致基板表面炭化、腐蚀和破裂。在高频电路中,导线间距将影响分布电容的大小,从而影响着电路的损耗和稳定性。因此导线间距的选择要根据基板材料、工作环境、分布电容大小等因素来综合确定。最小导线间距还同印制电路板的加工方法有关,选用时就更需要综合考虑。
③印制导线的形状:印制导线的形状可分为平直均匀形、斜线均匀形、曲线均匀形、曲线非均匀形。如图7所示。
印制导线的图形除要考虑机械因素、电气因素外,还要考虑导线图形的美观大方,所以在设计印制导线的图形时,应遵循如图8所示的原则。
设计印制导线的图形时,应遵循原则如下:
①在同一印制电路板上的导线宽度(除地线外)最好一样;
②印制导线应走向平直,不应有急剧的弯曲和出现尖角,所有弯曲与过渡部分均须用圆弧连接;
③印制导线应尽可能避免有分支,如必须有分支,分支处应圆滑;
④印制导线尽避免长距离平行,对双面布设的印制线不能平行,应交叉布设;
⑤如果印制电路板面需要有大面积的铜箔,例如电路中的接地部分,则整个区域应镂空成栅状,这样在浸焊时能迅速加热,并保证涂锡均匀。栅状铜箔还能防止印制电路板受热变形,防止铜箔翘起和剥脱。
4.印制电路板图的计算机辅助设计
(1)印制电路板CAD
印制电路板设计直接影响到产品的质量与电气性能。随着电子工业的发展,各种类型印制电路板需求量越来越大,要求设计制造印制电路板的周期越短越好。传统的手工设计已满足不了生产上的需求,现代计算机的发展为电路原理图和印制电路板图的CAD设计提供了强有力的手段。印制电路板CAD文件实际上是载入印制电路板设计信息的文件,其文件结构如图9所示。
(2)CAD的操作步骤:
1)在CAD软件上画出电路原理图。
2)向计算机输入能反映出印制板布线结构的参数,包括:焊盘尺寸大小、元器件的孔径和焊盘、走线关系、印制导线宽度、最小间距、布线区域尺寸等参数。
3)操作计算机执行布线设计命令,则计算机可自动完成印制电路板的设计。
4)布线后,审查走线的合理性,并对不理想的走线进行修改。
5)定稿后,通过绘图机按所需比例直接绘制黑白底图。
6)将设计存入软盘,可以永久性保存。
(3)几种常用的印制电路板CAD软件
目前,印制电路板的设计大多使用计算机设计软件进行设计。这类软件主要有:SMARTWORK、TANGO、
protel等几种。
用计算机将设计好的PCB图保存,提交给印制电路板的生产厂家。
原作者:机工电气