完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
|
|
相关推荐
1个回答
|
|
1. AD7799概述
AD7799是ADI公司早期推出一款高精度低速率的ADC,性能参数如下 •均方根(RMS)噪声: 27 nV(4.17 Hz、AD7799) 65 nV(16.7 Hz、AD7799) 40 nV(4.17 Hz、AD7798) 85 nV(16.7 Hz、AD7798) •功耗:380 µA(典型值) •省电模式:最大1 µA •低噪声可编程增益仪表放大器 •更新速率:4.17 Hz至470 Hz;3个差分输入(相比ADS1232多一个通道) •内部时钟振荡器 •50 Hz/60 Hz同时抑制 •基准电压检测 •低端电源开关 •可编程数字输出 •熔断电流控制 •电源电压:2.7 V至5.25 V •高达23.5个有效位 AD7799性价比很高,非常适用于静态变量的测试,如电子秤、应变计、气体分析、仪器仪表、压力传感器、血液分析、工业过程控制等应用。本人对AD7799做了一次比较测试,分享下测试的结果 2. 硬件设计分析 从结构图可以看出来,AD7799是模拟区域与数字区域完全独立的ADC,即AVDD给模拟区域供电,DVDD给数字区域供电,在原理图设计方面按照官方指导文档,需要对两个区域做独立的布线与隔离处理,才能让信噪比最佳。另可靠的基准电压是高精度ADC命根,本次试验选择TI公司推出的REF5025作基准参考,REF5025可低于3µVpp/V 噪声、3ppm/°C 漂移,性能是十分出色的。 由于经常做高频类项目,十分讨厌杜邦线/飞线测试方式,在高精度的领域,24位ADC梯度值2的2416777216,如果接入基准电压是2.5v,理论分辨率可达到0.149μV,做过高频的工程师深知杜邦线的罪恶,根据上面的技术分析,哪怕线路被引入1μV的干扰,也可以让精度打上一定折扣。为了让ADS1232性能得以充分体现,特意做了一个测试载板,载板的设计也是很关键,分割模拟数字区域同时,连接地方大量使用钽电容做旁路电路,以把波纹抑制到最小,合理的布局与布线也很重要,敷铜区域也需要模数分离,以磁珠或者0-5R/电感隔开。 3. 时序图解说 由时序图看出来,AD7799读写是简单的3线串行读数方式,属于Microwire串行接口,STM32的SPI接口可以 完美的与之匹配,当然也可以采用软仿SPI替代STM32的硬件SPI,这样的程序更具移植性。SPI时序实现也相对简单, AD7799的CS线仅仅只是做片选使用(上图所示),而不用过多管理,保持低电平即可。特别需要注意的是在空闲时 候,SCLK时钟信号需要保持高电平,在SCLK半个周期当DIN接收到0x58后转换的数据才传入到DOUT总线,这时候 才能读取数据。 4. 核心源码 寄存器列表(官方) #define AD7799_CS_LOW AD_CS_0() #define AD7799_CS_HIGH AD_CS_1() #define ADC_RDY_DAT (AD_DO) /*AD7799 Registers*/ #define AD7799_REG_COMM 0 /* Communications Register(WO, 8-bit) */ #define AD7799_REG_STAT 0 /* Status Register (RO, 8-bit) */ #define AD7799_REG_MODE 1 /* Mode Register (RW, 16-bit */ #define AD7799_REG_CONF 2 /* Configuration Register (RW, 16-bit)*/ #define AD7799_REG_DATA 3 /* Data Register (RO, 16-/24-bit) */ #define AD7799_REG_ID 4 /* ID Register (RO, 8-bit) */ #define AD7799_REG_IO 5 /* IO Register (RO, 8-bit) */ #define AD7799_REG_OFFSET 6 /* Offset Register (RW, 24-bit */ #define AD7799_REG_FULLSALE 7 /* Full-Scale Register (RW, 24-bit */ /* Communications Register Bit Designations (AD7799_REG_COMM) */ #define AD7799_COMM_WEN (1 << 7) /* Write Enable */ #define AD7799_COMM_WRITE (0 << 6) /* Write Operation */ #define AD7799_COMM_READ (1 << 6) /* Read Operation */ #define AD7799_COMM_ADDR(x) (((x) & 0x7) << 3) /* Register Address */ #define AD7799_COMM_CREAD (1 << 2) /* Continuous Read of Data Register */ /* Status Register Bit Designations (AD7799_REG_STAT) */ #define AD7799_STAT_RDY (1 << 7) /* Ready */ #define AD7799_STAT_ERR (1 << 6) /* Error (Overrange, Underrange) */ #define AD7799_STAT_CH3 (1 << 2) /* Channel 3 */ #define AD7799_STAT_CH2 (1 << 1) /* Channel 2 */ #define AD7799_STAT_CH1 (1 << 0) /* Channel 1 */ /* Mode Register Bit Designations (AD7799_REG_MODE) */ #define AD7799_MODE_SEL(x) (((x) & 0x7) << 13) /* Operation Mode Select */ #define AD7799_MODE_PSW(x) (1 << 12) /* Power Switch Control Bit */ #define AD7799_MODE_RATE(x) ((x) & 0xF) /* Filter Update Rate Select */ /* AD7799_MODE_SEL(x) options */ #define AD7799_MODE_CONT 0 /* Continuous Conversion Mode */ #define AD7799_MODE_SINGLE 1 /* Single Conversion Mode */ #define AD7799_MODE_IDLE 2 /* Idle Mode */ #define AD7799_MODE_PWRDN 3 /* Power-Down Mode */ #define AD7799_MODE_CAL_INT_ZERO 4 /* Internal Zero-Scale Calibration */ #define AD7799_MODE_CAL_INT_FULL 5 /* Internal Full-Scale Calibration */ #define AD7799_MODE_CAL_SYS_ZERO 6 /* System Zero-Scale Calibration */ #define AD7799_MODE_CAL_SYS_FULL 7 /* System Full-Scale Calibration */ /* Configuration Register Bit Designations (AD7799_REG_CONF) */ #define AD7799_CONF_BO_EN (1 << 13) /* Burnout Current Enable */ #define AD7799_CONF_UNIPOLAR (1 << 12) /* Unipolar/Bipolar Enable */ #define AD7799_CONF_GAIN(x) (((x) & 0x7) << 8) /* Gain Select */ #define AD7799_CONF_REFDET(x) (((x) & 0x1) << 5) /* Reference detect function */ #define AD7799_CONF_BUF (1 << 4) /* Buffered Mode Enable */ #define AD7799_CONF_CHAN(x) ((x) & 0x7) /* Channel select */ /* AD7799_CONF_GAIN(x) options */ #define AD7799_GAIN_1 0 #define AD7799_GAIN_2 1 #define AD7799_GAIN_4 2 #define AD7799_GAIN_8 3 #define AD7799_GAIN_16 4 #define AD7799_GAIN_32 5 #define AD7799_GAIN_64 6 #define AD7799_GAIN_128 7 /* AD7799_CONF_REFDET(x) options */ #define AD7799_REFDET_ENA 1 #define AD7799_REFDET_DIS 0 /* AD7799_CONF_CHAN(x) options */ #define AD7799_CH_AIN1P_AIN1M 0 /* AIN1(+) - AIN1(-) */ #define AD7799_CH_AIN2P_AIN2M 1 /* AIN2(+) - AIN2(-) */ #define AD7799_CH_AIN3P_AIN3M 2 /* AIN3(+) - AIN3(-) */ #define AD7799_CH_AIN1M_AIN1M 3 /* AIN1(-) - AIN1(-) */ #define AD7799_CH_AVDD_MONITOR 7 /* AVDD Monitor */ /* ID Register Bit Designations (AD7799_REG_ID) */ #define AD7799_ID 0x9 #define AD7799_ID_MASK 0xF /* IO (Excitation Current Sources) Register Bit Designations (AD7799_REG_IO) */ #define AD7799_IOEN (1 << 6) #define AD7799_IO1(x) (((x) & 0x1) << 4) #define AD7799_IO2(x) (((x) & 0x1) << 5) 初始化程序 unsigned char AD7799_Init(void) { unsigned char status = 0x1; u32 ID=AD7799_GetRegisterValue(AD7799_REG_ID, 1); if( (ID& 0x0F) != AD7799_ID) { status = 0x0; } return(status); } 读取寄存器值 unsigned long AD7799_GetRegisterValue(unsigned char regAddress, unsigned char size) { unsigned char data[5] = {0x00, 0x00, 0x00, 0x00, 0x00}; unsigned long receivedData = 0x00; data[0] = AD7799_COMM_READ | AD7799_COMM_ADDR(regAddress); AD7799_CS_LOW; SPI_Write(data,1); SPI_Read(data,size); AD7799_CS_HIGH; if(size == 1) { receivedData += (data[0] << 0); } if(size == 2) { receivedData += (data[0] << 8); receivedData += (data[1] << 0); } if(size == 3) { receivedData += (data[0] << 16); receivedData += (data[1] << 8); receivedData += (data[2] << 0); } return receivedData; } 写寄存器 void AD7799_SetRegisterValue(unsigned char regAddress, unsigned long regValue, unsigned char size) { unsigned char data[5] = {0x03, 0x00, 0x00, 0x00, 0x00}; data[0] = AD7799_COMM_WRITE | AD7799_COMM_ADDR(regAddress); if(size == 1) { data[1] = (unsigned char)regValue; } if(size == 2) { data[2] = (unsigned char)((regValue & 0x0000FF) >> 0); data[1] = (unsigned char)((regValue & 0x00FF00) >> 8); } if(size == 3) { data[3] = (unsigned char)((regValue & 0x0000FF) >> 0); data[2] = (unsigned char)((regValue & 0x00FF00) >> 8); data[1] = (unsigned char)((regValue & 0xFF0000) >> 16); } AD7799_CS_LOW; SPI_Write(data,(1 + size)); AD7799_CS_HIGH; } 复位 void AD7799_Reset(void) { unsigned char dataToSend[5] = {0x03, 0xff, 0xff, 0xff, 0xff}; AD7799_CS_LOW; SPI_Write(dataToSend,4); AD7799_CS_HIGH; } 初始化: void AD7799_INIT(void) { unsigned long command; command = AD7799_GetRegisterValue(AD7799_REG_CONF,2); command &= ~AD7799_CONF_GAIN(0xFF); command |= AD7799_CONF_GAIN(1); / 不使用内部PGA AD7799_SetRegisterValue(AD7799_REG_CONF,command,2); AD7799_SetReference(); command = AD7799_GetRegisterValue(AD7799_REG_CONF,2); command &= ~AD7799_CONF_CHAN(0xFF); command |= AD7799_CONF_CHAN(2); // 第三通道 AIN3+ —— AIN3- AD7799_SetRegisterValue(AD7799_REG_CONF,command,2); command = AD7799_GetRegisterValue(AD7799_REG_MODE,2); command &= ~AD7799_MODE_SEL(0xFF); command |= AD7799_MODE_SEL(0);// 连续转换模式 AD7799_SetRegisterValue(AD7799_REG_MODE,command,2); } 5. 测试结果 测试条件Vref=2.5v(REF5025调理过后输出)、Gain=1、Updata Reat=4.17Hz 测试源是AVDD电阻分压后的电压值,实际加入电压是:2.217452v(8位半表实测),通过误差曲线的分析, 摆幅稳定在±4µV,效果还是很理想的,官方测试条件Gain=64,加入片内放大器后噪声干扰还是不小的(下图,Y轴 单位LBS),有将近60个LBS的波动,当然主抗匹配也有一定的原因。因此在使用前零度和满度校准是十分必要的。 6. 总结 作为一款低速高精度的ADC,AD7799是个不错的选择,相比于ADS1232虽然价格上是高了,但是他比 ADS1232多了一个差分通道,转换速率可以到达470Hz,在本次测试看来,就性能上看起来稍比ADS1232好一点, 但是相差无几,同样,超高的性价比和出色的性能让它在同级别的ADC中也有很强的竞争能力。 |
|
|
|
只有小组成员才能发言,加入小组>>
3310 浏览 9 评论
2991 浏览 16 评论
3492 浏览 1 评论
9057 浏览 16 评论
4086 浏览 18 评论
1176浏览 3评论
604浏览 2评论
const uint16_t Tab[10]={0}; const uint16_t *p; p = Tab;//报错是怎么回事?
597浏览 2评论
用NUC131单片机UART3作为打印口,但printf没有输出东西是什么原因?
2334浏览 2评论
NUC980DK61YC启动随机性出现Err-DDR是为什么?
1895浏览 2评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-22 18:08 , Processed in 1.245859 second(s), Total 48, Slave 39 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号