完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
|
|
相关推荐
1个回答
|
|
STM 32的主系统
STM32主系统主要由四个驱动单元和四个被动单元构成。 四个驱动单元是: 、 内核 DCode 总线; 系统总线; 通用 DMA1; 通用 DMA2; 四被动单元是: AHB 到 APB 的桥:连接所有的 APB 设备; 内部 FlASH 闪存; 内部 SRAM; FSMC; 下面我们具体讲解一下图中几个总线的知识: ① ICode 总线:该总线将 M3 内核指令总线和闪存指令接口相连,指令的预取在该总线上面完成。 ② DCode 总线:该总线将 M3 内核的 DCode 总线与闪存存储器的数据接口相连接,常量加载和调试访问在该总线上面完成。 ③ 系统总线:该总线连接 M3 内核的系统总线到总线矩阵,总线矩阵协调内核和 DMA 间访问。 ④ DMA 总线:该总线将 DMA 的 AHB 主控接口与总线矩阵相连,总线矩阵协调 CPU 的DCode 和 DMA 到 SRAM,闪存和外设的访问。 ⑤ 总线矩阵:总线矩阵协调内核系统总线和 DMA 主控总线之间的访问仲裁,仲裁利用轮换算法。 ⑥ AHB/APB 桥:这两个桥在 AHB 和 2 个 APB 总线间提供同步连接,APB1 操作速度限于36MHz,APB2 操作速度全速(72M)。 时钟系统 众所周知,时钟系统是 CPU 的脉搏,就像人的心跳一样。所以时钟系统的重要性就不言而喻了。 STM32 的时钟系统比较复杂,不像简单的 51 单片机一个系统时钟就可以解决一切。于是有人要问,采用一个系统时钟不是很简单吗?为什么 STM32 要有多个时钟源呢? 因为首先STM32 本身非常复杂,外设非常的多,但是并不是所有外设都需要系统时钟这么高的频率,比如看门狗以及 RTC 只需要几十 k 的时钟即可。同一个电路,时钟越快功耗越大,同时抗电磁干扰能力也会越弱,所以对于较为复杂的 MCU 一般都是采取多时钟源的方法来解决这些问题。 在 STM32 中,有五个时钟源,为 HSI、HSE、LSI、LSE、PLL。从时钟频率来分可以分为 高速时钟源和低速时钟源,在这 5 个中 HIS,HSE 以及 PLL 是高速时钟,LSI 和 LSE 是低速时钟。从来源可分为外部时钟源和内部时钟源,外部时钟源就是从外部通过接晶振的方式获取时钟源,其中 HSE 和 LSE 是外部时钟源,其他的是内部时钟源。下面我们看看 STM32 的 5 个时钟源,我们讲解顺序是按图中红圈标示的顺序: ① HSI 是高速内部时钟,RC 振荡器,频率为 8MHz。 ② HSE 是高速外部时钟,可接石英 /陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。我们的开发板接的是 8M 的晶振。 ③ LSI 是低速内部时钟,RC 振荡器,频率为 40kHz。独立看门狗的时钟源只能是 LSI,同时 LSI 还可以作为 RTC 的时钟源。 ④ LSE 是低速外部时钟,接频率为 32.768kHz 的石英晶体。这个主要是 RTC 的时钟源。 ⑤ PLL 为锁相环倍频输出,其时钟输入源可选择为 HSI/2、HSE 或者 HSE/2。倍频可选择为2~16 倍,但是其输出频率最大不得超过 72MHz。 A. MCO 是 STM32 的一个时钟输出 IO(PA8),它可以选择一个时钟信号输出,可以选择为 PLL 输出的 2 分频、HSI、HSE、或者系统时钟。这个时钟可以用来给外部其他系统提供时钟源。 B. 这里是 RTC 时钟源,从图上可以看出,RTC 的时钟源可以选择 LSI,LSE,以及HSE 的 128 分频。 C. 从图中可以看出 C 处 USB 的时钟是来自 PLL 时钟源。STM32 中有一个全速功能的 USB 模块,其串行接口引擎需要一个频率为 48MHz 的时钟源。该时钟源只能从 PLL 输出端获取,可以选择为 1.5 分频或者 1 分频,也就是,当需要使用 USB模块时,PLL 必须使能,并且时钟频率配置为 48MHz 或 72MHz。 D. D 处就是 STM32 的系统时钟 SYSCLK,它是供 STM32 中绝大部分部件工作的时钟源。系统时钟可选择为 PLL 输出、HSI 或者 HSE。系统时钟最大频率为 72MHz,当然你也可以超频,不过一般情况为了系统稳定性是没有必要冒风险去超频的。 E. 这里的 E 处是指其他所有外设了。从时钟图上可以看出,其他所有外设的时钟最终来源都是 SYSCLK。SYSCLK 通过 AHB 分频器分频后送给各模块使用。这些模块包括: ① 、AHB 总线、内核、内存和 DMA 使用的 HCLK 时钟。 ② 、通过 8 分频后送给 Cortex 的系统定时器时钟,也就是 systick 了。 ③ 、直接送给 Cortex 的空闲运行时钟 FCLK。 ④ 、送给 APB1 分频器。APB1 分频器输出一路供 APB1 外设使用(PCLK1,最大频率 36MHz),另一路送给定时器(Timer)2、3、4 倍频器使用。 ⑤ 、送给 APB2 分频器。APB2 分频器分频输出一路供 APB2 外设使用(PCLK2,最大频率 72MHz),另一路送给定时器(Timer)1 倍频器使用。 其中需要理解的是 APB1 和 APB2 的区别,APB1 上面连接的是低速外设,包括电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3 等等,APB2 上面连接的是高速外设包括 UART1、SPI1、Timer1、ADC1、ADC2、所有普通 IO 口(PA~PE)、第二功能 IO 口等。居宁老师的《稀里糊涂玩 STM32》资料里面教大家的记忆方法是 2》1, APB2 下面所挂的外设的时钟要比 APB1 的高。 SYSCLK(系统时钟) =72MHz AHB 总线时钟(使用 SYSCLK) =72MHz APB1 总线时钟(PCLK1) =36MHz APB2 总线时钟(PCLK2) =72MHz PLL 时钟 =72MHz 端口复用功能 STM32 有很多的内置外设,这些外设的外部引脚都是与 GPIO 复用的。也就是说,一个 GPIO如果可以复用为内置外设的功能引脚,那么当这个 GPIO 作为内置外设使用的时候,就叫做复用。 端口重映射 为了使不同器件封装的外设 IO 功能数量达到最优,可以把一些复用功能重新映射到其他一些引脚上。STM32 中有很多内置外设的输入输出引脚都具有重映射(remap)的功能。我们知道每个内置外设都有若干个输入输出引脚,一般这些引脚的输出端口都是固定不变的,为了让设计工程师可以更好地安排引脚的走向和功能,在 STM32 中引入了外设引脚重映射的概念,即一个外设的引脚除了具有默认的端口外,还可以通过设置重映射寄存器的方式,把这个外设的引脚映射到其它的端口。 可以有 部分重映射和完全重映射。 STM32 NVIC 中断优先级管理 CM3 内核支持 256 个中断,其中包含了 16 个内核中断和 240 个外部中断,并且具有 256级的可编程中断设置。但 STM32 并没有使用 CM3 内核的全部东西,而是只用了它的一部分。 STM32 有 84 个中断,包括 16 个内核中断和 68 个可屏蔽中断,具有 16 级可编程的中断优先级。而我们常用的就是这 68 个可屏蔽中断,但是 STM32 的 68 个可屏蔽中断,在 STM32F103 系列上面,又只有 60 个(在 107 系列才有 68 个)。因为我们开发板选择的芯片是 STM32F103 系列的所以我们就只针对 STM32F103 系列这 60 个可屏蔽中断进行介绍。 中断优先级 IP[240]:全称是:Interrupt Priority Registers,是一个中断优先级控制的寄存器组。这个寄存器组相当重要!STM32 的中断分组与这个寄存器组密切相关。IP 寄存器组由 240 个 8bit 的寄存器组成,每个可屏蔽中断占用 8bit,这样总共可以表示 240 个可屏蔽中断。而 STM32 只用到了其中的前 60 个。IP[59]~IP[0]分别对应中断 59~0。而每个可屏蔽中断占用的 8bit 并没有全部使用,而是 只用了高 4 位。这 4 位,又分为抢占优先级和子优先级。抢占优先级在前,子优先级在后。而这两个优先级各占几个位又要根据 SCB-》AIRCR 中的中断分组设置来决定。 中断优先级组 我们就可以清楚的看到组 0~4 对应的配置关系,例如组设置为 3,那么此时所有的 60 个中断,每个中断的中断优先寄存器的高四位中的最高 3 位是抢占优先级,低 1 位是响应优先级。每个中断,你可以设置抢占优先级为 0~7,响应优先级为 1 或 0。抢占优先级的级别高于响应优先级。而数值越小所代表的优先级就越高。 这里需要注意两点:第一,如果两个中断的抢占优先级和响应优先级都是一样的话,则看哪个中断先发生就先执行;第二,高优先级的抢占优先级是可以打断正在进行的低抢占优先级中断的。而抢占优先级相同的中断,高优先级的响应优先级不可以打断低响应优先级的中断。 GPIO STM32 的 IO 口相比 51 而言要复杂得多,所以使用起来也困难很多。首先 STM32 的 IO 口可以由软件配置成如下 8 种模式: 1、输入浮空 2、输入上拉 3、输入下拉 4、模拟输入 5、开漏输出 6、推挽输出7、推挽式复用功能 8、开漏复用功能 每个 IO 口可以自由编程,但 IO 口寄存器必须要按 32 位字被访问(位带映射)。STM32 的很多 IO 口都是 5V 兼容的,这些 IO 口在与 5V 电平的外设连接的时候很有优势,具体哪些 IO 口是 5V 兼容的,可以从该芯片的数据手册管脚描述章节查到(I/O Level 标 FT 的就是 5V 电平兼容的)。 GPIO默认状态其实就是配置端口为浮空输入模式。 在配置 STM32 外设的时候,任何时候都要先使能该外设的时钟。GPIO 是挂载在 APB2 总线上的外设,在固件库中对挂载在 APB2 总线上的外设时钟使能是通过函数 RCC_APB2PeriphClockCmd()来实现的。 在固件库 V3.5 中,系统在启动的时候会调用 system_stm32f10x.c 中的函数 SystemInit()对系统时钟进行初始化,在时钟初始化完毕之后会调用 main()函数。 所以我们不需要再在 main()函数中调用 SystemInit()函数。当然如果有需要重新设置时钟系统,可以写自己的时钟设置代码,SystemInit()只是将时钟系统初始化为默认状态。 Code:表示程序所占用 FLASH 的大小(FLASH)。 RO-data:即 Read Only-data,表示程序定义的常量,如 const 类型(FLASH)。 RW-data:即 Read Write-data,表示已被初始化的全局变量(SRAM) ZI-data:即 Zero Init-data,表示未被初始化的全局变量(SRAM) 有了这个就可以知道你当前使用的 flash 和 sram 大小了,所以,一定要注意的是程序的大小不是.hex 文件的大小,而是编译后的 Code 和 RO-data 之和。 蜂鸣器的有源不是指电源的“源”,而是指有没有自带震荡电路,有源蜂鸣器自带了震荡电路,一通电就会发声;无源蜂鸣器则没有自带震荡电路,必须外部提供 2~5Khz 左右的方波驱动,才能发声。 上一章,我们就是利用 STM32 的 IO 口直接驱动 LED 的,本章的蜂鸣器,我们能否直接用 STM32 的 IO 口驱动呢?让我们来分析下:STM32的单个 IO 最大可以提供 25mA 电流(来自数据手册),而蜂鸣器的驱动电流是 30mA 左右,两者十分相近,但是全盘考虑,STM32 整个芯片的电流,最大也就 150mA,如果用 IO 口直接驱动蜂鸣器,其他地方用电就得省着点了…所以,我们不用 STM32 的 IO 直接驱动蜂鸣器,而是通过三极管扩流后再驱动蜂鸣器,这样 STM32 的 IO 只需要提供不到 1mA 的电流就足够了。 进行调试的时候如果需要外界输入,那么我们可以参考输入实验。 串口作为 MCU 的重要外部接口,同时也是软件开发重要的调试手段,其重要性不言而喻。现在基本上所有的 MCU 都会带有串口,STM32 自然也不例外。 STM32 的串口资源相当丰富的,功能也相当强劲。ALIENTEK 战舰 STM32 开发板所使用的 STM32F103ZET6 最多可提供 5 路串口,有分数波特率发生器、支持同步单线通信和半双工单线通讯、支持 LIN、支持调制解调器操作、智能卡协议和 IrDA SIR ENDEC 规范、具有 DMA等。 数据发送与接收。STM32 的发送与接收是通过数据寄存器 USART_DR 来实现的,这是一个双寄存器,包含了 TDR 和 RDR。当向该寄存器写数据的时候,串口就会自动发送,当收到数据的时候,也是存在该寄存器内。 RXNE(读数据寄存器非空),当该位被置 1 的时候,就是提示已经有数据被接收到了,并且可以读出来了。这时候我们要做的就是尽快去读取 USART_DR,通过读 USART_DR 可以将该位清零,也可以向该位写 0,直接清除。 TC(发送完成),当该位被置位的时候,表示 USART_DR 内的数据已经被发送完成了。如果设置了这个位的中断,则会产生中断。该位也有两种清零方式:1)读 USART_SR,写USART_DR。2)直接向该位写 0。 需要配置串口的波特率、字长、停止位、有无奇偶校验位、有无硬件数据流控制、工作模式。 外部中断 STM32 的每个 IO 都可以作为外部中断的中断输入口,这点也是 STM32 的强大之处。STM32F103 的中断控制器支持 19 个外部中断/事件请求。每个中断设有状态位,每个中断/事件都有独立的触发和屏蔽设置。STM32F103 的19 个外部中断为: 线 0~15:对应外部 IO 口的输入中断。 线 16:连接到 PVD 输出。 线 17:连接到 RTC 闹钟事件。 线 18:连接到 USB 唤醒事件。 看门狗 STM32 的独立看门狗由内部专门的 40Khz 低速时钟驱动,即使主时钟发生故障,它也仍然有效。这里需要注意独立看门狗的时钟是一个内部 RC 时钟,所以并不是准确的 40Khz,而是在 30~60Khz 之间的一个可变化的时钟,只是我们在估算的时候,以 40Khz 的频率来计算,看门狗对时间的要求不是很精确,所以,时钟有些偏差,都是可以接受的。 单片机系统在外界的干扰下会出现程序跑飞的现象导致出现死循环,看门狗电路就是为了避免这种情况的发生。看门狗的作用就是在一定时间内(通过定时计数器实现)没有接收喂狗信号(表示 MCU 已经挂了),便实现处理器的自动复位重启(发送复位信号)。 在键值寄存器(IWDG_KR)中写入 0xCCCC,开始启用独立看门狗;此时计数器开始从其复位值 0xFFF 递减计数。当计数器计数到末尾 0x000 时,会产生一个复位信号(IWDG_RESET)。 无论何时,只要键寄存器 IWDG_KR 中被写入 0xAAAA, IWDG_RLR 中的值就会被重新加载到计数器中从而避免产生看门狗复位 。 IWDG_PR 和 IWDG_RLR 寄存器具有写保护功能。要修改这两个寄存器的值,必须先向IWDG_KR 寄存器中写入 0x5555。将其他值写入这个寄存器将会打乱操作顺序,寄存器将重新被保护。重装载操作(即写入 0xAAAA)也会启动写保护功能。 还有两个寄存器,一个预分频寄存器(IWDG_PR),该寄存器用来设置看门狗时钟的分频系数。另一个重装载寄存器。该寄存器用来保存重装载到计数器中的值。该寄存器也是一个 32位寄存器,但是只有低 12 位是有效的。 窗口看门狗(WWDG)通常被用来监测由外部干扰或不可预见的逻辑条件造成的应用程序背离正常的运行序列而产生的软件故障。除非递减计数器的值在 T6 位(WWDG-》CR 的第六位)变成 0 前被刷新,看门狗电路在达到预置的时间周期时,会产生一个 MCU 复位。在递减计数器达到窗口配置寄存器(WWDG-》CFR)数值之前,如果 7 位的递减计数器数值(在控制寄存器中)被刷新, 那么也将产生一个 MCU 复位。这表明递减计数器需要在一个有限的时间窗口中被刷新。 定时器 STM32F1 的定时器功能十分强大,有 TIME1 和 TIME8 等高级定时器,也有 TIME2~TIME5 等通用定时器,还有 TIME6和 TIME7 等基本定时器 STM32F1 的通用定时器是一个通过可编程预分频器(PSC)驱动的 16 位自动装载计数器(CNT)构成。STM32 的通用定时器可以被用于:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和 PWM)等。 使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。STM32 的每个通用定时器都是完全独立的,没有互相共享的任何资源。 STM3F1 的通用 TIMx (TIM2、TIM3、TIM4 和 TIM5)定时器功能包括: 1) 16 位向上、向下、向上/向下自动装载计数器(TIMx_CNT)。 2) 16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数为 1~65535 之间的任意数值。 3) 4 个独立通道(TIMx_CH1~4),这些通道可以用来作为: A.输入捕获 B.输出比较 C.PWM 生成(边缘或中间对齐模式) D.单脉冲模式输出 4)可使用外部信号(TIMx_ETR)控制定时器和定时器互连(可以用 1 个定时器控制另外一个定时器)的同步电路。 5)如下事件发生时产生中断/DMA: A.更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) B.触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) C.输入捕获 D.输出比较 E.支持针对定位的增量(正交)编码器和霍尔传感器电路 F.触发输入作为外部时钟或者按周期的电流管理 定时器的时钟来源有 4 个: 1) 内部时钟(CK_INT) 2) 外部时钟模式 1:外部输入脚(TIx) 3) 外部时钟模式 2:外部触发输入(ETR) 4) 内部触发输入(ITRx):使用 A 定时器作为 B 定时器的预分频器(A 为 B 提供时钟)。 这些时钟,具体选择哪个可以通过 TIMx_SMCR 寄存器的相关位来设置。这里的 CK_INT时钟是从 APB1 倍频的来的,除非 APB1 的时钟分频数设置为 1,否则通用定时器 TIMx 的时钟是 APB1 时钟的 2 倍,当 APB1 的时钟不分频的时候,通用定时器 TIMx 的时钟就等于 APB1的时钟。这里还要注意的就是高级定时器的时钟不是来自 APB1,而是来自 APB2 的。 这里顺带介绍一下 TIMx_CNT 寄存器,该寄存器是定时器的计数器,该寄存器存储了当前定时器的计数值。 接着我们介绍自动重装载寄存器(TIMx_ARR),该寄存器在物理上实际对应着 2 个寄存器。一个是程序员可以直接操作的,另外一个是程序员看不到的,这个看不到的寄存器在《STM32参考手册》里面被叫做影子寄存器。事实上真正起作用的是影子寄存器。根据 TIMx_CR1 寄存器中 APRE 位的设置:APRE=0 时,预装载寄存器的内容可以随时传送到影子寄存器,此时 2者是连通的;而 APRE=1 时,在每一次更新事件(UEV)时,才把预装在寄存器的内容传送到影子寄存器。 PWM 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。简单一点,就是对脉冲宽度的控制。 STM32 的定时器除了 TIM6 和 7。其他的定时器都可以用来产生 PWM 输出。其中高级定时器 TIM1 和 TIM8 可以同时产生多达 7 路的 PWM 输出。而通用定时器也能同时产生多达 4路的 PWM 输出,这样,STM32 最多可以同时产生 30 路 PWM 输出! 输入捕获模式 输入捕获模式可以用来测量脉冲宽度或者测量频率。STM32 的定时器,除了 TIM6 和 TIM7,其他定时器都有输入捕获功能。STM32 的输入捕获,简单的说就是通过检测 TIMx_CHx 上的边沿信号,在边沿信号发生跳变(比如上升沿/下降沿)的时候,将当前定时器的值(TIMx_CNT)存放到对应的通道的捕获/比较寄存器(TIMx_CCRx)里面,完成一次捕获。同时还可以配置捕获时是否触发中断/DMA 等。 |
|
|
|
只有小组成员才能发言,加入小组>>
调试STM32H750的FMC总线读写PSRAM遇到的问题求解?
1614 浏览 1 评论
X-NUCLEO-IHM08M1板文档中输出电流为15Arms,15Arms是怎么得出来的呢?
1541 浏览 1 评论
970 浏览 2 评论
STM32F030F4 HSI时钟温度测试过不去是怎么回事?
682 浏览 2 评论
ST25R3916能否对ISO15693的标签芯片进行分区域写密码?
1592 浏览 2 评论
1863浏览 9评论
STM32仿真器是选择ST-LINK还是选择J-LINK?各有什么优势啊?
644浏览 4评论
STM32F0_TIM2输出pwm2后OLED变暗或者系统重启是怎么回事?
515浏览 3评论
531浏览 3评论
stm32cubemx生成mdk-arm v4项目文件无法打开是什么原因导致的?
504浏览 3评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-11-22 00:17 , Processed in 0.855793 second(s), Total 77, Slave 60 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号