完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
关键字: AVR 模数(AD)转换范例程序 1. 开发语言 本范例使用 WinAVR/GCC 20050214 版本开发 2. 范例描述 本程序简单的示范了如何使用ATMEGA16的ADC模数转换器 普通的单端输入 差分输入及校准 基准电压的校准 查询方式 中断方式 数据格式的变换 出于简化程序考虑,各种数据没有对外输出,学习时建议使用JTAG ICE硬件仿真器 3. 电路图设计 : 为简化线路设计,使用了本网站的ATmega16功能小板。 在范例中 选用内部2.56V电压基准作Vref ,差分通道 10倍放大 则 单端电压测量范围 02.56V, 分辨率2.5mV 差分电压测量范围 +/- 256mV 分辨率0.5mV 电流分辨率 = 50uA@10欧姆 电流采样电阻 电流分辨率 =500uA@ 1欧姆 电流采样电阻 程序中需要把实测的基准电压代入 常量Vref中,以获得更准确地结果 我手中的样片实测为 2.556V@Vcc=5.0V 2.550V@Vcc=3.3V 本电路仅供参考,没有考虑抗干扰方面的要求 . 4. 代码设计与说明 : /***************************************************** ADC(模数转换)使用范例 ******* ******* 策划、整理与测试: 阿莫(ARMok) *** **** 代码设计: HJJourAVR ******* 编译器:WINAVR20050214 ******* www.OurAVR.com 2005.8.31 ****************************************************/#include //管脚定义 #define in_Single 0 //PA0(ADC0) #define in_Diff_P 3 //PA3(ADC3) #define in_Diff_N 2 //PA2(ADC2) //常量定义 //单端通道,不放大 #define AD_SE_ADC0 0x00 //ADC0 #define AD_SE_ADC1 0x01 //ADC1 #define AD_SE_ADC2 0x02 //ADC2 #define AD_SE_ADC3 0x03 //ADC3 #define AD_SE_ADC4 0x04 //ADC4 #define AD_SE_ADC5 0x05 //ADC5 #define AD_SE_ADC6 0x06 //ADC6 #define AD_SE_ADC7 0x07 //ADC7 //差分通道ADC0作负端,10/200倍放大 #define AD_Diff0_0_10x 0x08 //ADC0+ ADC0-, 10倍放大,校准用 #define AD_Diff1_0_10x 0x09 //ADC1+ ADC0-, 10倍放大 #define AD_Diff0_0_200x 0x0A //ADC0+ ADC0-,200倍放大,校准用 #define AD_Diff1_0_200x 0x0B //ADC1+ ADC0-,200倍放大 //差分通道ADC2作负端,10/200倍放大 #define AD_Diff2_2_10x 0x0C //ADC2+ ADC2-, 10倍放大,校准用 #define AD_Diff3_2_10x 0x0D //ADC3+ ADC2-, 10倍放大 #define AD_Diff2_2_200x 0x0E //ADC2+ ADC2-,200倍放大,校准用 #define AD_Diff3_2_200x 0x0F //ADC3+ ADC2-,200倍放大 //差分通道ADC1作负端,不放大 #define AD_Diff0_1_1x 0x10 //ADC0+ ADC1- #define AD_Diff1_1_1x 0x11 //ADC1+ ADC1-,校准用 #define AD_Diff2_1_1x 0x12 //ADC2+ ADC1- #define AD_Diff3_1_1x 0x13 //ADC3+ ADC1- #define AD_Diff4_1_1x 0x14 //ADC4+ ADC1- #define AD_Diff5_1_1x 0x15 //ADC5+ ADC1- #define AD_Diff6_1_1x 0x16 //ADC6+ ADC1- #define AD_Diff7_1_1x 0x17 //ADC7+ ADC1- //差分通道ADC2作负端,不放大 #define AD_Diff0_2_1x 0x18 //ADC0+ ADC2- #define AD_Diff1_2_1x 0x19 //ADC1+ ADC2- #define AD_Diff2_2_1x 0x1A //ADC2+ ADC2-,校准用 #define AD_Diff3_2_1x 0x1B //ADC3+ ADC2- #define AD_Diff4_2_1x 0x1C //ADC4+ ADC2- #define AD_Diff5_2_1x 0x1D //ADC5+ ADC2- //单端通道,不放大 #define AD_SE_VBG 0x1E //VBG 内部能隙1.22V电压基准,校准用 #define AD_SE_GND 0x1F //接地 校准用 //注: //差分通道,如果使用1x或10x增益,可得到8位分辨率。如果使用200x增益,可得到7位分辨率。 //在PDIP封装下的差分输入通道器件未经测试。只保证器件在TQFP与MLF封装下正常工作。 #define Vref 2556 //mV 实测的Vref引脚电压@5.0V供电 //#define Vref 2550 //mV 实测的Vref引脚电压@3.3V供电 //全局变量 unsigned int ADC_SingleEnded; //单端输入的ADC值 int ADC_Diff; //差分输入的ADC值 volatile unsigned int ADC_INT_SE; //中断模式用的单端输入ADC值,会在中断服务程序中被修改, //须加volatile限定 volatile unsigned char ADC_OK; //ADC状态,会在中断服务程序中被修改,须加volatile限定 unsigned int LED_Volt; //变换后的电压mV int LED_Curr; //变换 |
|
相关推荐
4 个讨论
|
|
请教一下:128单片机AD采样的输出结果怎么换算?
下面是我编的一段程序: //取ADC_0 ADCSRA=0x00; ADMUX=0x40;//选择AVCC作为ADC参考电压,ADLAR=0右对齐,选择ADC0作为输入通道,单端输入 //ADCSRA=(1< adc_l0=ADCL;//先读取低八位 adc_h0=ADCH;//再读取高两位 temp0=adc_h0<<8|adc_l0; temp0=temp0>>1; //放弃一位的精度 temp0-=35; //修正??? //adc_data0[0]=(uchar)(temp0); //f=(float)(temp0); // f=f*5/1024; // temp0=(uint)(f); 最后四句是我自己写的,我觉得这才是真正的换算结果,可是事实好像不是这样的...如果加上后面这四句,那么结果基本上是0V了!我选择的参考电压是AVCC, 可以帮忙分析一下吗?在线等候呀.... |
|
|
|
|
|
只有小组成员才能发言,加入小组>>
AVR Atmega16 Bootloader程序与上位机LabView程序
5114 浏览 6 评论
#include <ioavr.h>这个头文件我应该下什么编译器
7762 浏览 0 评论
3019 浏览 2 评论
3100 浏览 1 评论
10049 浏览 1 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-11-19 04:22 , Processed in 0.680873 second(s), Total 55, Slave 44 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号