完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
SoC中低功耗RF收发器的设计策略,它涉及到当前的一个问题即高度集成对数字电路来讲很有利,但是对RF设计者来讲却是个头疼的问题,主要问题包括串扰(数字噪声引入电源和信号线),无法接受的电源特性以及成本问题。
最大挑战是射频共存(比如GPS, 蓝牙和蜂窝通信)的问题。当想要更多的集成多个收发器在一个die中来降低成本时,将所有的射频部分完美地放在一起会由于接口问题而变成一个大难题。另外,在大小适当的晶片上实现这样的射频设计也是个问题,因为Vdd总是与更小器件尺寸匹配,所以太低的Vdd会降低射频的信号处理能力,引起更多的泄漏(因为更薄的氧化层),增加1/f闪烁噪声。 器件尺寸的缩放对RF收发器的功率耗散并没有帮助,因为发送器的功率由***法规确定,它并不像数字电路一样功耗完全由技术决定。 SoC中的RF收发器包含了模拟、RF、混合信号以及DSP电路。这是个很难做的混合物,所以现在有趋势将收发器做的尽量数字化,这个趋势就是软件无线电(SDR),它看上去是RF领域在这个年代的圣杯。通过校准和纠正技术,一个更加数字化的收发器可以用DSP来补偿低成本的模拟电路所带来的影响。 在一些RF应用中,平均功率消耗不由工作功率决定,而是由待机功耗决定,此时RF收发器是关闭的,只有处理器和总线处于工作状态。Kianush展示了一个ZigBee的例子,射频工作时间为1ms,待机时间为100ms到4s,此时,由于发送周期很短,1mA的待机电流导致的能量消耗会是20mA的发射电流导致的消耗的10倍。 制程的发展也会引起泄漏。对于一个恒压源,从180nm到130nm就会使泄漏增加10倍,问题出在更薄的栅极氧化层,在90nm光刻中它只有5个原子层(1.2nm)。绕过这个问题的一个方法是给系统的非易失性内存一个单独的电源,并在待机期间关闭所有电路。好消息是基于铬的高K绝缘材料在45nm制程上比65nm制程将泄漏减小了若干数量级。 对RF发送器来讲效率主要由功放(PA)的效率决定。GSM、蓝牙和ZigBee的发送器可以使用C类PA,相比于蜂窝电话射频采用的高度线性的A类PA来讲,C类不是很线性但是效率很高。接受器的功耗主要由动态范围的要求确定,由噪底和最大预计信号间的关系确定。 正在研发需要更少电感的发送器和接收器,因为数字电路可以只用一个电感就将成百上千门电路放到一个晶圆中。 |
|
|
|
只有小组成员才能发言,加入小组>>
如何使用STM32+nrf24l01架构把有线USB设备无线化?
2543 浏览 7 评论
请问能利用51单片机和nRF24L01模块实现实时语音无线传输吗?
2331 浏览 5 评论
3155 浏览 3 评论
2801 浏览 8 评论
为什么ucosii上移植lwip后系统进入了HardFault_Handler?
2759 浏览 4 评论
请教各位大咖:有没有接收频率32M左右的芯片推荐的?先感谢啦!
607浏览 1评论
852浏览 0评论
965浏览 0评论
618浏览 0评论
445浏览 0评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-11-21 23:23 , Processed in 1.016388 second(s), Total 77, Slave 60 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号