完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
|
|
相关推荐
4个回答
|
|
简单的NPN二极管连接
目标: 本次实验的目的是研究将双极性结型晶体管(BJT)连接为二极管时的正向/反向电流与电压特性。 材料: ADALM2000 主动学习模块 无焊面包板 一个1 kΩ电阻(或其他类似值) 一个小信号NPN晶体管(2N3904) 说明: NPN晶体管的发射极-基极结的电流与电压特性可以使用ADALM2000实验室硬件和以下连接来测量。使用面包板,将波形发生器W1连接到电阻R1的一端。将示波器输入2+也连接到这里。将Q1的基极和集电极连接到R1的另一端,如图所示。Q1的发射极接地。将示波器输入2-和示波器输入1+连接到Q1的基极-集电极节点。示波器输入1-也可以选择接地。 图1.NPN二极管连接图。 硬件设置: 波形发生器配置为100 Hz三角波,峰峰值幅度为6 V,偏移为0 V。示波器的差分通道2(2+、2-)用于测量电阻(和晶体管)中的电流。连接示波器通道1 (1+)用于测量晶体管两端的电压。流过晶体管的电流是1+和1-之间的电压差除以电阻值(1 kΩ)的结果。 图2.NPN二极管面包板电路。 步骤: 将捕获的数据加载到电子表格中,计算电流。绘制电流与晶体管两端电压(VBE)的曲线。没有反向流动电流。在正向导通区域,电压-电流呈对数关系。如果在对数坐标系中绘制电流曲线,结果应为直线。 图3.NPN二极管XY曲线。 图4.NPN二极管波形。 |
|
|
|
反向击穿特性
目标: 本次实验的目标是研究BJT连接为二极管时发射极-基极结的反向击穿电压特性。 材料: 一个100 Ω电阻 一个小信号PNP晶体管(2N3906) 说明: 使用面包板,将波形发生器输出连接到100 Ω串联电阻R1的一端以及Q1的基极和集电极,如图2所示。发射极连接到-5 V固定电源。将示波器通道1 (1+) 连接到基极-集电极节点,1-连接到发射极节点。示波器通道2用于测量R1两端的电压,从而测得通过Q1的电流。 之所以选择PNP 2N3906而不是NPN 2N3904,是因为PNP发射极-基极击穿电压小于ADALM2000可产生的+10 V最大值,而NPN的击穿电压可能会高于10V。 图5.PNP发射极-基极反向击穿配置。 硬件设置: 波形发生器配置为100 Hz三角波,峰峰值幅度为10 V,偏移为0 V。示波器通道1 (1+)用于测量电阻两端的电压。其设置应配置为将通道2跨接到电阻R1的两端(2+、2-)。两个通道均应设置为每格1 V。流过晶体管的电流是2+和2-之间的电压差除以电阻值(100 Ω)的结果。 图6.PNP发射极面包板电路。 步骤: 实验室硬件电源将可用的最大电压限制为小于10V。许多晶体管的发射极-基极反向击穿电压都大于此电压。在图6所示的配置中,可以测量0 V至10 V(W1峰峰值摆幅)之间的电压。 图7.PNP发射极波形。 捕获示波器波形并将其导出到电子表格中。对于本示例中使用的PNP晶体管2N3906,发射极-基极结击穿电压约为8.5V。 |
|
|
|
降低二极管的有效正向电压
目标: 本次实验的目标是研究一种正向电压特性小于BJT连接作为二极管时的电路配置。 材料: 一个1 kΩ电阻 一个150 kΩ电阻(或100 kΩ与47 kΩ电阻串联) 一个小信号NPN晶体管(2N3904) 一个小信号PNP晶体管(2N3906) 说明: 连接面包板,将波形发生器W1连接到串联电阻R1的一端以及NPN Q1的集电极和PNP Q2的基极,如图8所示。Q1的发射极接地。Q2的集电极连接到Vn (5 V)。电阻R2的一端连接到Vp (5 V)。R2的另一端连接到Q1的基极和Q2的发射极。示波器通道2 (2+)的单端输入连接到Q1的集电极。 图8.降低二极管的有效正向压降所需的配置图。 硬件设置: 波形发生器配置为100 Hz三角波,峰峰值幅度为8 V,偏移为2 V。示波器通道2 (2+)用于测量电阻两端的电压。流过晶体管的电流是示波器输入1+和1-之间的电压差除以电阻值(1kΩ)的结果。 图9.降低二极管有效正向压降的面包板电路。 步骤: 现在,二极管的导通电压约为100 mV,而第一个示例中的简单二极管连接方案为650 mV。绘制W1扫频时Q1的 VBE 曲线。 图10.降低二极管有效正向压降的波形。 |
|
|
|
VBE 乘法器电路 目标: 我们已探讨了一种能有效降低 VBE 的方法,本次实验的目的则是增大 VBE ,并展示与单个BJT连接为二极管的方案相比更大的正向电压特性。 材料: 两个2.2 kΩ电阻 一个1 kΩ电阻 一个5 kΩ可变电阻、电位计 一个小信号NPN晶体管(2N3904) 说明: 连接面包板,将波形发生器W1连接到电阻R1的一端,如图11所示。Q1的发射极接地。电阻R2、R3和R4构成分压器,电位计R3的滑动端连接到Q1的基极。Q1的集电极连接到R1的另一端和R2处的分压器顶端。示波器通道2 (2+)连接到Q1的集电极。 图11.VBE乘法器配置。 硬件设置: 波形发生器配置为100 Hz三角波,峰峰值幅度为4 V,偏移为2 V。示波器通道单端输入2+用于测量晶体管两端的电压。其设置应配置为通道1+连接发生器W1以显示输出,通道2+连接Q1的集电极。流过晶体管的电流是示波器输入1+和示波器输入2+测得的W1两端的电压差除以电阻值(1 kΩ)的结果。 图12.VBE乘法器面包板电路。 步骤: 开始时,将电位计R3设置为其范围的中间值,Q2集电极处的电压应大约为 VBE的2倍。将R3设置为最小值时,集电极处的电压应为 VBE的9/2(或4.5)倍。将R3设置为最大值时,集电极处的电压应为 VBE的9/7倍。 图13.VBE 乘法器面包板波形。 |
|
|
|
只有小组成员才能发言,加入小组>>
869 浏览 2 评论
12806 浏览 0 评论
4103 浏览 7 评论
2324 浏览 9 评论
2143 浏览 2 评论
442浏览 2评论
742浏览 2评论
869浏览 2评论
591浏览 1评论
648浏览 1评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-11-21 21:51 , Processed in 0.848321 second(s), Total 83, Slave 66 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号