串联RLC电路的阻抗 由于三个矢量电压彼此异相,因此X L,X C和R也必须彼此“异相”,并且R,X L和X C之间的关系为矢量和这三个组成部分。这将使我们的RLC电路总阻抗,ž。可以绘制这些电路阻抗,并用阻抗三角形表示,如下所示。 串联RLC电路的阻抗三角形
串联RLC电路的阻抗Z取决于角频率ω,X L和X C一样。 如果电容电抗大于电感电抗X C > X L,则整个电路电抗为电容性,从而给出超前的相位角。
同样,如果电感电抗大于电容电抗X L > X C,则整个电路电抗为电感性,从而给串联电路一个滞后的相角。如果这两个电抗的是相同的,X 大号 = X Ç然后发生这种情况被称为共振频率,并产生效果的角频率共振,我们将看更详细的另一个教程。
然后,电流的大小取决于施加到串联RLC电路的频率。当阻抗Z处于最大值时,电流为最小值,同样,当Z处于最小值时,电流为最大值。因此,上述阻抗公式可以重写为:
源电压V S和电流i之间的相角θ与阻抗三角形中Z和R之间的角相同。该相角的值可以是正值或负值,具体取决于源电压是超前还是滞后于电路电流,并且可以根据阻抗三角的欧姆值以数学方式计算得出,如下所示: 系列RLC电路示例1串联的RLC电路包含一个12Ω的电阻,一个0.15H的电感和一个100uF的电容器,跨接在一个100V,50Hz的电源上。计算总电路阻抗,电路电流,功率因数并绘制电压相量图。
感抗,X 大号。
容抗,X Ç。
电路阻抗,ž。
电路中的电流,I
在串联RLC电路的电压,VR ,VL,Vc。
电路功率因数和相角θ。
相量图。
由于相位角θ作为51.8正值计算ø电路的总电抗必须是电感性的。由于我们在串联RLC电路中将电流矢量作为参考矢量,所以电流使电源电压“滞后” 51.8 o,因此我们可以说相位角滞后了,这已由助记符“ ELI”证实。
系列RLC电路摘要在包含电阻器,电感器和电容器的串联RLC电路中,电源电压V S是由三个分量V R,V L和V C组成的相量之和,并且这三个分量共同具有电流。由于电流对于所有三个分量都是公共的,因此在构建电压三角形时将其用作水平参考。
电路的阻抗是与电流流动完全相反的方向。对于串联RLC电路,可以通过将电压三角形的每一边除以其电流I来绘制阻抗三角形。在电阻元件上的电压降等于余* R,在这两个反应性元件上的电压是I * X = I * X 大号 - I * X Ç而源极电压等于余* Z。V S与I之间的角度将是相位角θ。
当使用包含多个纯电阻或纯电阻的电阻,电容或电感的串联RLC电路时,可以将它们全部加在一起以形成单个组件。例如,所有电阻加在一起,R T =(R 1 + R 2 + R 3 ) …等等,或者所有电感的L T =(L 1 + L 2 + L 3 ) …等等,这样包含许多元素的电路可以容易减小到单个阻抗。 电源技术之RLC电路分析(一)
|