气敏传感器ppt原理及应用 接触燃烧式气敏元件 金属氧化物半导体气敏元件 氧化锆气敏元件 工作原理、主要类型及应用 一、接触燃烧式气体传感器 1、检测原理 可燃性气体(H2、CO、CH4等)与空气中的氧接触,发生氧化反应,产生反应热(无焰接触燃烧热),使得作为敏感材料的铂丝温度升高,电阻值相应增大。一般情况下,空气中可燃性气体的浓度都不太高(低于10%),可燃性气体可以完全燃烧,其发热量与可燃性气体的浓度有关。空气中可燃性气体浓度愈大,氧化反应(燃烧)产生的反应热量(燃烧热)愈多,铂丝的温度变化(增高)愈大,其电阻值增加的就越多。因此,只要测定作为敏感件的铂丝的电阻变化值(ΔR),就可检测空气中可燃性气体的浓度。但是,使用单纯的铂丝线圈作为检测元件,其寿命较短,所以,实际应用的检测元件,都是在铂丝圈外面涂覆一层氧化物触媒。这样既可以延长其使用寿命,又可以提高检测元件的响应特性。 接触燃烧式气体敏感元件的桥式电路如图。图中F1是检测元件;F2是补偿元件,其作用是补偿可燃性气体接触燃烧以外的环境温度、电源电压变化等因素所引起的偏差。工作时,要求在F1和F2上保持100mA~200mA的电流通过,以供可燃性气体在检测元件F1上发生氧化反应(接触燃烧)所需要的热量。当检测元件F1与可燃性气体接触时,由于剧烈的氧化作用(燃烧),释放出热量,使得检测元件的温度上升,电阻值相应增大,桥式电路不再平衡,在A、B间产生电位差E。 2、接触燃烧式气敏元件的结构 用高纯的铂丝,绕制成线圈,为了使线圈具有适当的阻值(1Ω~2Ω),一般应绕10圈以上。在线圈外面涂以氧化铝或氧化铝和氧化硅组成的膏状涂覆层,干燥后在一定温度下烧结成球状多孔体。将烧结后的小球,放在贵金属铂、钯等的盐溶液中,充分浸渍后取出烘干。然后经过高温热处理,使在氧化铝(氧化铝一氧化硅)载体上形成贵金属触媒层,最后组装成气体敏感元件。除此之外,也可以将贵金属触媒粉体与氧化铝、氧化硅等载体充分混合后配成膏状,涂覆在铂丝绕成的线圈上,直接烧成后备用。另外,作为补偿元件的铂线圈,其尺寸、阻值均应与检测元件相同。并且,也应涂覆氧化铝或者氧化硅载体层,只是无须浸渍贵金属盐溶液或者混入贵金属触媒粉体,形成触媒层而已。 二、半导体气体传感器 气体敏感元件,大多是以金属氧化物半导体为基础材料。当被测气体在该半导体表面吸附后,引起其电学特性(例如电导率)发生变化。目前流行的定性模型是:原子价控制模型、表面电荷层模型、晶粒间界势垒模型。 1、半导体气敏元件的特性参数 (1)气敏元件的电阻值 将电阻型气敏元件在常温下洁净空气中的电阻值,称为气敏元件(电阻型)的固有电阻值,表示为Ra。一般其固有电阻值在(103~105)Ω范围。 测定固有电阻值Ra时, 要求必须在洁净空气环境中进行。由于经济地理环境的差异,各地区空气中含有的气体成分差别较大,即使对于同一气敏元件,在温度相同的条件下,在不同地区进行测定,其固有电阻值也都将出现差别。因此,必须在洁净的空气环境中进行测量。 (2)气敏元件的灵敏度 是表征气敏元件对于被测气体的敏感程度的指标。它表示气体敏感元件的电参量(如电阻型气敏元件的电阻值)与被测气体浓度之间的依从关系。表示方法有三种 (a)电阻比灵敏度K
(b)气体分离度
RC1—气敏元件在浓度为Cc的被测气体中的阻值: RC2—气敏元件在浓度为C2的被测气体中的阻值。通常,C1>C2。 (c)输出电压比灵敏度KV
Va:气敏元件在洁净空气中工作时,负载电阻上的电压输出; Vg:气敏元件在规定浓度被测气体中工作时,负载电阻的电压输出 (3)气敏元件的分辨率 表示气敏元件对被测气体的识别(选择)以及对干扰气体的抑制能力。气敏元件分辨率S表示为 Va—气敏元件在洁净空气中工作时,负载电阻上的输出电压;Vg—气敏元件在规定浓度被测气体中工作时,负载电阻上的电压 Vgi—气敏元件在i种气体浓度为规定值中工作时,负载电阻的电压 (4)气敏元件的响应时间 表示在工作温度下,气敏元件对被测气体的响应速度。一般从气敏元件与一定浓度的被测气体接触时开始计时,直到气敏元件的阻值达到在此浓度下的稳定电阻值的63%时为止,所需时间称为气敏元件在此浓度下的被测气体中的响应时间,通常用符号tr表示。 (5)气敏元件的加热电阻和加热功率 气敏元件一般工作在200℃以上高温。为气敏元件提供必要工作温度的加热电路的电阻(指加热器的电阻值)称为加热电阻,用RH表示。直热式的加热电阻值一般小于5Ω;旁热式的加热电阻大于20Ω。气敏元件正常工作所需的加热电路功率,称为加热功率,用PH表示。一般在(0.5~2.0)W范围。 (6)气敏元件的恢复时间 表示在工作温度下,被测气体由该元件上解吸的速度,一般从气敏元件脱离被测气体时开始计时,直到其阻值恢复到在洁净空气中阻值的63%时所需时间。 2、烧结型SnO2气敏元件 SnO2系列气敏元件有烧结型、薄膜型和厚膜型三种。烧结型应用最广泛性。 其敏感体用粒径很小(平均粒径≤1μm)的SnO2粉体为基本材料,根据需要添加不同的添加剂,混合均匀作为原料。主要用于检测可燃的还原性气体,其工作温度约300℃。根据加热方式,分为直接加热式和旁热式两种。 (1)直接加热式SnO2气敏元件(直热式气敏元件) 由芯片(敏感体和加热器),基座和金属防爆网罩三部分组成。因其热容量小、稳定性差,测量电路与加热电路间易相互干扰,加热器与SnO2基体间由于热膨胀系数的差异而导致接触不良,造成元件的失效,现已很少使用。 2)旁热式SnO2气敏元件 旁热式气敏器件结构及符号 三、氧化锆氧气传感器 固体电解质是具有离子导电性能的固体物质。一般认为,固体物质(金属或半导体)中,作为载流子传导电流的是正、负离子。可是,在固体电解质中,作为载流子传导电流的,却主要是离子。二氧化锆(ZrO2)在高温下(但尚远未达到熔融的温度)具有氧离子传导性。 纯净的二氧化锆在常温下属于单斜晶系,随着温度的升高,发生相转变。在1100℃下,为正方晶系,2500℃下,为立方晶系,2700℃下熔融,在熔融二氧化锆中添加氧化钙、三氧化二钇、氧化镁等杂质后,成为稳定的正方晶型,具有莹石结构,称为稳定化二氧化锆。并且由于杂质的加入,在二氧化锆晶格中产生氧空位,其浓度随杂质的种类和添加量而改变,其离子电导性也随杂质的种类和数量而变化。 四、气体传感器的应用 分为检测、报警、监控等几种类型。 1、电源电路 一般气敏元件的工作电压不高(3V~10V),其工作电压,特别是供给加热的电压,必须稳定。否则,将导致加热器的温度变化幅度过大,使气敏元件的工作点漂移,影响检测准确性。
[此贴子已经被作者于2008-7-1 13:44:49编辑过]
0
|
|
|
|