# kNN
# model = neighbors.KNeighborsClassifier()
# decision tree
# model = tree.DecisionTreeClassifier()
# random forest
# model = ensemble.RandomForestClassifier(n_estimators=10) # n_estimators为基决策树的数量,一般越大效果越好直至趋于收敛
# AdaBoost
model = ensemble.AdaBoostClassifier(learning_rate=1.0) # learning_rate的作用是收缩基学习器的权重贡献值
# GBDT
model = ensemble.GradientBoostingClassifier(n_estimators=10)