完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
使用Python代码,我们从D435捕获中获得点云,但它过滤掉了一些点(可能是那些具有NaN值的点)并导致数据集不完整。
1280x720分辨率应该产生921600点,但我们的分辨率通常在800000-900000点左右。 假设数据是从图像生成的,则预期完整的点云具有结构 - 即,理想地,它将根据像素位置的行或列进行排序。 一旦某些点被过滤,结构就会丢失,因此能够轻松地将像素与3D点对应,更重要的是能够根据数据构建结构化网格。 当然,我们可以使用像Delaunay三角测量这样的东西来构建网格,但是对于结构化数据,这是不必要的。 知道内在/外在参数,我们可以从深度和彩色图像构建我们自己的点云,但这也应该是不必要的,因为SDK已经在这样做了。 是否可以让点云在生成时包含NaN值,这样我们就可以根据行或列像素位置构建完整的921600点? 以上来自于谷歌翻译 以下为原文 Using Python code, we are getting the point cloud from a D435 capture but it is filtering out some points (presumably those with NaN values) and results in a data set that is not complete. The 1280x720 resolution should result in 921600 points but ours is typically around 800000-900000 points. Given that the data is generated from an image, the complete point cloud would be expected to have structure -- i.e., it would ideally be ordered according to row or column in terms of pixel locations. Once some points are filtered that structure is lost and so is the ability to easily correspond pixels to 3D points, and more importantly the ability to build a structured mesh from the data. Of course we can use something like Delaunay triangulation to build a mesh, but with structured data this would be unnecessary. Knowing the intrinsic/extrinsic parameters, we could build our own point cloud from the depth and color images, but this should also be unnecessary since the SDK is already doing this. Is it possible to have the point cloud include NaN values when being generated so that we have the complete set of 921600 points where they are structured according to row or column pixel location? |
|
相关推荐
5个回答
|
|
我找到了SDK 2.0的点云脚本(不幸的是在Python中),它指定了如何处理无效像素,显然给它们的深度值为零而不是删除它们。
//设置深度值为零的无效像素,用于表示无数据 pcl :: PointXYZRGB点; if(depth_value == 0){ if(mUseUncolorizedPoints){ point.x = NAN; point.y = NAN; point.z = NAN; } 奇怪的故障SR300深度与颜色对齐·问题#1027·IntelRealSense / librealsense·GitHub 以上来自于谷歌翻译 以下为原文 I found a point cloud script for SDK 2.0 (not in Python, unfortunately) that specifies how to deal with invalid pixels, apparently giving them a depth value of zero instead of removing them. // Set invalid pixels with a depth value of zero, which is used to indicate no data pcl::PointXYZRGB point; if (depth_value == 0) { if (mUseUncolorizedPoints) { point.x = NAN; point.y = NAN; point.z = NAN; } Weird glitch SR300 depth aligned to color · Issue #1027 · IntelRealSense/librealsense · GitHub |
|
|
|
nywerwer 发表于 2018-10-30 15:28 谢谢! 我代表另一个团队成员发帖,我现在不看他们的代码,但我知道我们一直在使用一个特定的函数来获得一个函数的整个点云,而你发布的链接正在做我所做的事情 希望能够逐像素地找到并生成点云(并且在没有好数据的情况下输入NaN值)。 这应该是我需要的! 以上来自于谷歌翻译 以下为原文 Thanks! I'm posting on behalf of another team member and am not looking at their code right now, but I know we've been using a particular function to get the entire point cloud with one function, whereas the link you posted is doing what I was hoping to find and generating the point cloud pixel-by-pixel (and entering NaN values where there is no good data). This should be exactly what I need! |
|
|
|
秦小姐9048 发表于 2018-10-30 15:39 大! 请稍后告诉我们您的工作原理。 祝你好运! 以上来自于谷歌翻译 以下为原文 Great! Let us know later how it work outs for you, please. Good luck! |
|
|
|
嘿马蒂, 最后尝试用C ++实现这个解决方案并遇到了一些最终解决的问题 - 所以最后我有一个完整的点云,这就是我的目标。 但是,当我尝试按照您提供的链接中的代码时,我必须处理两个问题(这非常有用!): 1.据我所知,当前版本的SDK似乎没有提供“deproject”功能。 我不得不使用“rs2_deproject_pixel_to_point”,但这很好用。 2.使用if-else结构来捕获坏点并将NaN值点插入点云是不成功的,并且导致将RGB数据映射到点云的奇怪问题。 这是两个图像:在左侧,我们看到在将深度为零的每个点的x-y-z数据设置为NAN之后的点云; 在右侧,我们看到完整的点云,而没有设置任何点到NAN。 由于某种原因,在点云中使用NAN数据会导致RGB数据被解释的问题(尽管x-y-z数据看起来很好)。 很高兴能够将点作为点云的一部分存在但不会显示使用NaN值,但对于我的应用程序,我可以与它们一起坐在原点。 再次感谢您的帮助,我在下面附上我的代码以防其他人想要访问它(抱歉,复制过程中显示缩进信息丢失了......)。 干杯, 布赖恩 #include“stdafx.h” #包括 #包括 #include“opencv2 / imgproc / imgproc.hpp” #包括 #包括 #包括 #包括 #包括 使用命名空间cv; 使用命名空间std; int main(int argc,char * argv []) { // RealSense管道 rs2 ::管道管道; rs2 :: config cfg; //深度流配置 cfg.enable_stream(RS2_STREAM_DEPTH,1280,720,RS2_FORMAT_Z16,30); //颜色流配置 cfg.enable_stream(RS2_STREAM_COLOR,1280,720,RS2_FORMAT_RGB8,30); //启动管道并获取传感器配置文件数据 auto pipeProfile = pipe.start(cfg); auto sensor = pipeProfile.get_device()。first(); auto depthScale = sensor.get_depth_scale(); //深度和颜色流 auto align = new rs2 :: align(RS2_STREAM_COLOR); auto depth_stream = pipeProfile.get_stream(RS2_STREAM_DEPTH).as(); auto color_stream = pipeProfile.get_stream(RS2_STREAM_COLOR).as(); auto depthToColor = depth_stream.get_extrinsics_to(color_stream); auto colorToDepth = color_stream.get_extrinsics_to(depth_stream); auto depthIntrinsic = depth_stream.get_intrinsics(); auto colorIntrinsic = color_stream.get_intrinsics(); // OpenCV和PCL窗口 cv :: namedWindow(“Image”,cv :: WINDOW_AUTOSIZE); cv :: namedWindow(“Depth”,cv :: WINDOW_AUTOSIZE); pcl :: visualization :: CloudViewer查看器(“查看器”); //主循环(当PCL查看器打开时) while(!viewer.wasStopped()){ //获取新框架 rs2 :: frameset frames = pipe.wait_for_frames(); auto processedFrames = align-> process(frames); rs2 :: frame frameDepth = processedFrames.first(RS2_STREAM_DEPTH); rs2 :: frame frameRGB = processedFrames.first(RS2_STREAM_COLOR); //框架大小 const int w = frameRGB.as()。get_width(); const int h = frameRGB.as()。get_height(); // OpenCV格式的RGB和深度图像 cv :: Mat image(cv :: Size(w,h),CV_8UC3,(void *)frameRGB.get_data(),cv :: Mat :: AUTO_STEP); cv :: Mat image_depth(cv :: Size(w,h),CV_16U,(uchar *)frameDepth.get_data(),cv :: Mat :: AUTO_STEP); //生成RGB和深度的输出图像(标准化深度) cv :: Mat image_bgr,image_map,image_nrm; cv :: cvtColor(image,image_bgr,cv :: COLOR_RGB2BGR); image_depth.convertTo(image_nrm,CV_32F); 双dMin,dMax; minMaxIdx(image_depth,& dMin,& dMax); image_nrm / = 65535.0; normalize(image_nrm,image_nrm,0,1,NORM_MINMAX); image_nrm * = 255; image_nrm.convertTo(image_nrm,CV_8U); applyColorMap(image_nrm,image_map,2); //更新图像窗口 imshow(“Image”,image_bgr); imshow(“深度”,image_map); waitKey(10); //新点云 pcl :: PointCloud :: Ptr cloud(new pcl :: PointCloud); int N_bad = 0; //坏点计数器(即深度= 0) //对于每个像素...... for(int u = 0; u points.push_back(point); } } //将云输出到查看器 viewer.showCloud(云); } //终止 返回0; } 以上来自于谷歌翻译 以下为原文 Hey Marty, Finally tried to implement this solution in C++ and ran into a few problems that were eventually solved -- so in the end I have a full point cloud which is what I was aiming for. However, here are two issues that I had to deal with as I tried following the code in the link you provided (which was extremely helpful!): 1. The function "deproject" does not seem to be available in the current version of the SDK as far as I can tell. I had to use "rs2_deproject_pixel_to_point" instead but this works fine. 2. The use of an if-else structure to catch bad points and insert NaN value points into the point cloud was unsuccessful and led to a strange problem with mapping RGB data to the point cloud. Here are two images: on the left we see the point cloud after setting x-y-z data to NAN for each point where the depth is zero; on the right we see the full point cloud without setting any points to NAN. For some reason the use of NAN data in the point cloud leads to problems with how the RGB data is interpreted (although the x-y-z data appears to be fine). It is nice to be able to have points exist as part of the point cloud but not show up using NaN values but for my application I can live with them sitting at the origin. Thanks again for your help, I'm attaching my code below in case someone else wants to access it (sorry, it appears the indentation was lost when copying over...). Cheers, Brian #include "stdafx.h"#include |
|
|
|
秦小姐9048 发表于 2018-10-30 16:07 好报道! 我很高兴为你效劳。 非常感谢您与社区分享您的经验和代码。 以上来自于谷歌翻译 以下为原文 Great report! I'm really glad it worked out for you. Thanks so much for sharing your experience and code with the community. |
|
|
|
只有小组成员才能发言,加入小组>>
467浏览 0评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-11-23 02:51 , Processed in 0.784120 second(s), Total 87, Slave 70 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号