转帖
1) 去耦电容 我们都知道在电源和地之间加一些电容可以降低系统的噪声,但是到底在电路板上加多少电容?每个电容的容值多大合适?每个电容放在什么位置更好?类似这些问题我们一般都没有去认真考虑过,只是凭设计者的经验来进行,有时甚至认为电容越少越好。
在高速设计中,我们必须考虑电容的寄生参数,定量的计算出去耦电容的个数以及每个电容的容值和放置的具体的位置,确保系统的阻抗在控制范围之内,一个基本的原则是需要的去耦电容,一个都不能少,多余的电容,一个也不要。 2) 地反弹 当高速器件的边缘速率低于0.5ns时,来自大容量数据总线的 数据交换速率特别快,当它在电源层中产生足以影响信号的强波纹时,就会产生电源不稳定问题。当通过地回路的电流变化时,由于回路电感会产生一个电压,当上 升沿缩短时,电流变化率增大,地反弹电压增加。此时,地平面(地线)已经不是理想的零电平,而电源也不是理想的直流电位。当同时开关的门电路增加时,地反弹变得更加严重。
对于12封装、连接器或电路板上都有可能会出现地反弹,从而导致电源完整性问题。
从技术的发展角度来看,器件的上升沿将只会减少,总线的宽度将只会增加。保持地反弹在可接受的唯一方法是减少电源和地分布电感。
对于芯片,意味着,移到一个阵列晶片,尽可能多地放置电源和地,且到封装的连线尽可能短,以减少电感。
对于封装,意味着移动层封装,使电源的地平面的间距更近,如在BGA封装中用的。对于连接器,意味着使用更多的地引脚或重新设计连接器使其具有内部的电源和地平面,如基于连接器的带状软线。
对于电路板,意味着使相邻的电源和地平面尽可能地近。由于电感和长度成正比,所以尽可能使电源和地的连线短将降低地噪声。 3) 电源分配系统 电源完整性设计是一件十分复杂的事情,但是如何近年控制电源系统(电源和地平面)之间阻抗是设计的关键。理论上讲,电源系统间的阻抗越低越好,阻抗越低,噪声幅度越小,电压损耗越小。
|