根据上面的Flash组织模式,我们可以根据自己的使用方便来作相应的定义。从Sector5到Sector11大小都是128K,所以我们做如下宏定义:
#defineSECTOR_SIZE 1024*128 //字节
虽然ST的库函数比较全面,但都是基本操作,为了使用方面,根据我们自己的需要对其进行再次封装。
对于读操作相对比较简单,内置闪存模块可以在通用地址空间直接寻址,就像读取变量一样。
//从指定地址开始读取多个数据
void FLASH_ReadMoreData(uint32_tstartAddress,uint16_t *readData,uint16_t countToRead)
{
uint16_tdataIndex;
for(dataIndex=0;dataIndex
{
readData[dataIndex]=FLASH_ReadHalfWord(startAddress+dataIndex*2);
}
}
//读取指定地址的半字(16位数据)
uint16_t FLASH_ReadHalfWord(uint32_t address)
{
return*(__IO uint16_t*)address;
}
//读取指定地址的全字(32位数据)
uint32_t FLASH_ReadWord(uint32_t address)
{
uint32_ttemp1,temp2;
temp1=*(__IO uint16_t*)address;
temp2=*(__IO uint16_t*)(address+2);
return(temp2<<16)+temp1;
}
对于写操作相对来说要复杂得多,写操作包括对用户数据的写入和擦除。为了防止误操作还有写保护锁。但这些基本的操作ST的库函数已经为我们写好了,我们只需要调用即可。
STM32复位后,FPEC模块是被保护的,只有在写保护被解除后,我们才能操作相关寄存器。STM32闪存的编程每次必须写入16位,任何不是半字的操作都会造成错误。如下图是Flash写的过程:
STM32的FLASH在编程的时候,也必须要求其写入地址的FLASH是被擦除了的(也就是其值必须是0XFFFF),否则无法写入。Flash的擦除要求必须整页擦除,所以也必须整页写入,否则可能会丢失数据。如下图是Flash页擦除过程:
如下为Flash全擦除过程,
根据以上图示我们便写数据写入函数如下:
//从指定地址开始写入多个数据
void FLASH_WriteMoreData(uint32_tstartAddress,uint16_t *writeData,uint16_t countToWrite)
{
if(startAddress=(FLASH_BASE+1024*FLASH_SIZE)))
{
return;//非法地址
}
FLASH_Unlock(); //解锁写保护
uint32_toffsetAddress=startAddress-FLASH_BASE; //计算去掉0X08000000后的实际偏移地址
uint32_tsectorPosition=offsetAddress/SECTOR_SIZE; //计算扇区地址,
uint32_tsectorStartAddress=sectorPosition*SECTOR_SIZE+FLASH_BASE; //对应扇区的首地址
FLASH_ErasePage(sectorStartAddress);//擦除这个扇区
uint16_tdataIndex;
for(dataIndex=0;dataIndex
{
FLASH_ProgramHalfWord(startAddress+dataIndex*2,writeData[dataIndex]);
}
FLASH_Lock();//上锁写保护
}
在擦除之前应该将页面上的数据读取出来与要写入的数据合并,待擦除后再写入,但这样数据量很大,所以考虑到是少量数据存储,所以每次都将全部数据同时写入,简化操作,也减少数据处理量。经测试以上程序写入和读出数据均正确,可以实现内部Flash的读写操作。
参考了ST的编程手册PM0081——STM32F40xxx 和 STM32F41xxx Flash编程手册。