完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
深度残差收缩网络是深度残差网络的一种新的升级版本,其实是深度残差网络、注意力机制(参照Squeeze-and-Excitation Network,SENet)和软阈值化的深度集成。
在一定程度上,深度残差收缩网络的工作原理,可以理解为:通过注意力机制注意到不重要的特征,然后通过软阈值化将它们置为零;或者说,通过注意力机制注意到重要的特征,将它们保留下来,从而加强深度神经网络从含噪声信号中提取有用特征的能力。 |
|
相关推荐
5个回答
|
|
为什么要提出深度残差收缩网络呢?
首先,在对样本进行分类的时候,样本中不可避免地会有一些噪声,就像高斯噪声、粉色噪声、拉普拉斯噪声等。更广义地讲,样本中很可能包含着与当前分类任务无关的信息,这些信息也可以理解为噪声。这些噪声可能会对分类效果产生不利的影响。(软阈值化是许多信号降噪算法中的一个关键步骤) 举例来说,在马路边聊天的时候,聊天的声音里就可能会混杂车辆的鸣笛声、车轮声等等。当对这些声音信号进行语音识别的时候,识别效果不可避免地会受到鸣笛声、车轮声的影响。从深度学习的角度来讲,这些鸣笛声、车轮声所对应的特征,就应该在深度神经网络内部被删除掉,以避免对语音识别的效果造成影响。 其次,即使是同一个样本集,各个样本的噪声量也往往是不同的。(这和注意力机制有相通之处;以一个图像样本集为例,各张图片中目标物体所在的位置可能是不同的;注意力机制可以针对每一张图片,注意到目标物体所在的位置) 例如,当训练猫狗分类器的时候,对于标签为“狗”的5张图像,第1张图像可能同时包含着狗和老鼠,第2张图像可能同时包含着狗和鹅,第3张图像可能同时包含着狗和鸡,第4张图像可能同时包含着狗和驴,第5张图像可能同时包含着狗和鸭子。我们在训练猫狗分类器的时候,就不可避免地会受到老鼠、鹅、鸡、驴和鸭子等无关物体的干扰,造成分类准确率下降。如果我们能够注意到这些无关的老鼠、鹅、鸡、驴和鸭子,将它们所对应的特征删除掉,就有可能提高猫狗分类器的准确率。 |
|
|
|
软阈值化是很多降噪算法的核心步骤
软阈值化,是很多信号降噪算法的核心步骤,将绝对值小于某个阈值的特征删除掉,将绝对值大于这个阈值的特征朝着零的方向进行收缩。它可以通过以下公式来实现: 软阈值化的输出对于输入的导数为: 由上可知,软阈值化的导数要么是1,要么是0。这个性质是和ReLU激活函数是相同的。因此,软阈值化也能够减小深度学习算法遭遇梯度弥散和梯度爆炸的风险。 在软阈值化函数中,阈值的设置必须符合两个的条件: 第一,阈值是正数;第二,阈值不能大于输入信号的最大值,否则输出会全部为零。 同时,阈值最好还能符合第三个条件:每个样本应该根据自身的噪声含量,有着自己独立的阈值。 这是因为,很多样本的噪声含量经常是不同的。例如经常会有这种情况,在同一个样本集里面,样本A所含噪声较少,样本B所含噪声较多。那么,如果是在降噪算法里进行软阈值化的时候,样本A就应该采用较大的阈值,样本B就应该采用较小的阈值。 在深度神经网络中,虽然这些特征和阈值失去了明确的物理意义,但是基本的道理还是相通的。也就是说,每个样本应该根据自身的噪声含量,有着自己独立的阈值。 |
|
|
|
注意力机制
注意力机制在计算机视觉领域是比较容易理解的。动物的视觉系统可以快速扫描全部区域,发现目标物体,进而将注意力集中在目标物体上,以提取更多的细节,同时抑制无关信息。具体请参照注意力机制方面的文章。 Squeeze-and-Excitation Network(SENet)是一种较新的注意力机制下的深度学习方法。 在不同的样本中,不同的特征通道,在分类任务中的贡献大小,往往是不同的。SENet采用一个小型的子网络,获得一组权重,进而将这组权重与各个通道的特征分别相乘,以调整各个通道特征的大小。 这个过程,就可以认为是在施加不同大小的注意力在各个特征通道上。 在这种方式下,每一个样本,都会有自己独立的一组权重。换言之,任意的两个样本,它们的权重,都是不一样的。在SENet中,获得权重的具体路径是,“全局池化→全连接层→ReLU函数→全连接层→Sigmoid函数”。 |
|
|
|
深度注意力机制下的软阈值化
深度残差收缩网络借鉴了上述SENet的子网络结构,以实现注意力机制下的软阈值化。通过蓝色框内的子网络,就可以学习得到一组阈值,对各个特征通道进行软阈值化。 在这个子网络中,首先对输入特征图的所有特征,求它们的绝对值。然后经过全局均值池化和平均,获得一个特征,记为A。在另一条路径中,全局均值池化之后的特征图,被输入到一个小型的全连接网络。这个全连接网络以Sigmoid函数作为最后一层,将输出归一化到0和1之间,获得一个系数,记为α。最终的阈值可以表示为α×A。 因此,阈值就是,一个0和1之间的数字×特征图的绝对值的平均。通过这种方式,保证了阈值为正,而且不会太大。 而且,不同的样本就有了不同的阈值。因此,在一定程度上,可以理解成一种特殊的注意力机制:注意到与当前任务无关的特征,通过软阈值化,将它们置为零;或者说,注意到与当前任务有关的特征,将它们保留下来。 最后,堆叠一定数量的基本模块以及卷积层、批标准化、激活函数、全局均值池化以及全连接输出层等,就得到了完整的深度残差收缩网络。 |
|
|
|
深度残差收缩网络或许有更广泛的通用性
深度残差收缩网络事实上是一种通用的特征学习方法。这是因为很多特征学习的任务中,样本中或多或少都会包含一些噪声,以及不相关的信息。这些噪声和不相关的信息,有可能会对特征学习的效果造成影响。例如说: 在图片分类的时候,如果图片同时包含着很多其他的物体,那么这些物体就可以被理解成“噪声”;深度残差收缩网络或许能够借助注意力机制,注意到这些“噪声”,然后借助软阈值化,将这些“噪声”所对应的特征置为零,就有可能提高图像分类的准确率。 在语音识别的时候,如果在声音较为嘈杂的环境里,比如在马路边、工厂车间里聊天的时候,深度残差收缩网络也许可以提高语音识别的准确率,或者给出了一种能够提高语音识别准确率的思路。 |
|
|
|
只有小组成员才能发言,加入小组>>
【爱芯派 Pro 开发板试用体验】人体姿态估计模型部署后期尝试
1655 浏览 0 评论
1146 浏览 0 评论
【爱芯派 Pro 开发板试用体验】人体姿态估计模型部署后期尝试
1193 浏览 0 评论
【爱芯派 Pro 开发板试用体验】在爱芯派 Pro上部署坐姿检测
1200 浏览 0 评论
【爱芯派 Pro 开发板试用体验】利用爱芯派 Pro部署USB摄像头
1357 浏览 0 评论
【爱芯派 Pro 开发板试用体验】爱芯元智AX650N部署yolov5s 自定义模型
827浏览 1评论
1853浏览 1评论
【爱芯派 Pro 开发板试用体验】+ 利用TF卡进行系统更新
1494浏览 1评论
1453浏览 1评论
761浏览 0评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-20 07:45 , Processed in 0.855781 second(s), Total 87, Slave 70 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号