发 帖  
  • 面向表格数据的推理任务,在计算机领域,特别是自然语言处理(Natural Language Processing,NLP)领域的研究中扮演着重要角色[1]。该任务要求模型在给定一个或多个表格的情况下,按照任务要求,生成相...
    0
    2469次阅读
    0条评论
  • 随着对LLMs的不断应用,大家也发现了诸多问题。比如常见的幻觉现象,LLMs可喜欢一本正经地说着胡话呢。除此之外,LLMs也有可能生成一些歧视某些身份群体的内容,还有一些伤害我们小小心灵的有毒内容(这可不行)。...
    0
    769次阅读
    0条评论
  • 全微调(Full Fine-tuning):全微调是指对整个预训练模型进行微调,包括所有的模型参数。在这种方法中,预训练模型的所有层和参数都会被更新和优化,以适应目标任务的需求。...
    0
    26833次阅读
    0条评论
  • 大模型在语言理解、决策制定以及泛化能力等方面展现出强大的潜力,成为代理构建过程中的关键角色,而代理的进展也为大模型提出了更高的要求。...
    0
    2296次阅读
    0条评论
  • 在大型语言模型(LLMs)的应用中,提示工程(Prompt Engineering)是一种关键技术,用于引导模型生成特定输出或执行特定任务。通过精心设计的提示,可以显著提高LLMs的性能和适用性。本文将介绍提示工程的主要...
    0
    1386次阅读
    0条评论
  • 从评测能力上来看,由于目前的评测数据集主要是利用人类试题及其标准答案进行评测,这种评价方式更偏向对推理能力的评估,存在评估结果和模型真实能力有⼀定偏差。...
    0
    1210次阅读
    0条评论
  • 本文对比了多种基线方法,包括无监督域自适应的传统方法(如Pseudo-labeling和对抗训练)、基于检索的LM方法(如REALM和RAG)和情境学习方法(如In-context learning)。...
    0
    1324次阅读
    0条评论
  • 使用了LLaMA-13B来训练模型和奖励模型,使用BAD模型作为有害内容检测模型。...
    0
    819次阅读
    0条评论
  • 我们使用LLAMA2-7B作为实验的基础模型。我们主要评估将旧知识更新为新知识的能力,因此模型将首先在旧知识上进行为期3个时期的微调。表1中F-Learning中设置的超参数λ分别取值为0.3、0.7、0.1和1.5。...
    0
    983次阅读
    0条评论
  • 在研究人员选择的模型中,GPT-3 davinci(非指令微调)、GPT-3 textdavinci-001(指令微调)和GPT-3 textdavinci-003(InstructGPT)都是以前观察到过涌现能力的模型...
    0
    1117次阅读
    0条评论
  • 在 LLaMA, BERT 以及 ViTs 模型上,4-bit 量化皆取得了远超 SOTA 的结果。特别是,这篇文章展示了 4-bit 量化的 LLaMA-13B 模型,在零样本推理任务上达到平均 63.1 的分数,只比...
    0
    1531次阅读
    0条评论
  • 不同于单模态模型编辑,多模态模型编辑需要考虑更多的模态信息。文章出发点依然从单模态模型编辑入手,将单模态模型编辑拓展到多模态模型编辑,主要从以下三个方面:可靠性(Reliability),稳定性(Locality)和泛化...
    0
    994次阅读
    0条评论
  • MathOctopus在多语言数学推理任务中,表现出了强大的性能。MathOctopus-7B 可以将LLmMA2-7B在MGSM不同语言上的平均表现从22.6%提升到40.0%。更进一步,MathOctopus-13B...
    0
    977次阅读
    0条评论
  • 当然 MPT-7B-StoryWriter-65k+ [5] 模型也有较长的外推能力,主要在于,注意力这块使用了 ALIBI [6]。要拥有什么样的长度,取决你的需求。对于对话模型,往往不需要那么长的外推能力。但对于想做...
    0
    932次阅读
    0条评论
  • vLLM是一个开源的大模型推理加速框架,通过PagedAttention高效地管理attention中缓存的张量,实现了比HuggingFace Transformers高14-24倍的吞吐量。...
    0
    7398次阅读
    0条评论
ta 的专栏

成就与认可

  • 获得 7 次赞同

    获得 0 次收藏
关闭

站长推荐 上一条 /9 下一条

返回顶部