因为FOC运算需要用到电机的线电流值和母线电压值,所以ADC采样功能必不可少。但是单片机的IO口输入电压范围是0~3.3V,所以为了保证安全,需要把测量电压保持在这个范围之内。
计算运放电路的放大倍数之前,需要先明确几个模电的概念-------虚短、虚断。
虚短:运放的两个输入端视为同等电位;
虚断:因为流入运放输入端的电流往往不足1uA,所以输入端可以视为等效开路。
电压采样电路图
电压采样电路如上图所示。
电压放大增益计算
假设上图中Vcc为48V,R1 = 47K,R2 = 1K。则根据电阻分压,Vi = 48 * (1/48)=1V。
因为虚短:V+ = V-。 (式1)
因为虚断:反向输入端无电流输入输出,通过R3和R4的电流相等,假设电流为I,则由欧姆定律得:
I = Vout / (R3 + R4)。
由图和(式1)知:Vi = V+ = V- = R4上的分压。
即:Vi = I * R4
即:
Vi已知,只要保证Vout在0~3.3V之间就可以进行电压的采集,进而对电路中电阻阻值进行设置。
电流采样电路图
电流采样电路图如上图所示。
电流放大增益计算
ADC采集电流实际上还是采集电压,如上图,R9就是电流采样电阻。采集R9两端电压,然后根据欧姆定律得到电流值。
先假设:V = i * R9。 (式1)
由虚断知:运放输入端没有电流流过,则流过R5和R8的电流相等;R6和R7的电流相等。
则有如下公式:
由虚短知:Vx = Vy (式3)
联合(式1)和图可知:V1 = V2 + V。 (式4)
将(式4)和(式3)带入(式2)的第一个等式得:
假设!!R5 = R6。R7 = R8。
(式5)-((式2)的第二个等式)可得到:
进而得到:
因为电流范围已知,所以V就已知,然后R5和R6相等(自由设置),R8和R7相等(自由设置)。
只要保持Vout在0~3.3V之间,就可以对电路电阻进行设置。
因为FOC运算需要用到电机的线电流值和母线电压值,所以ADC采样功能必不可少。但是单片机的IO口输入电压范围是0~3.3V,所以为了保证安全,需要把测量电压保持在这个范围之内。
计算运放电路的放大倍数之前,需要先明确几个模电的概念-------虚短、虚断。
虚短:运放的两个输入端视为同等电位;
虚断:因为流入运放输入端的电流往往不足1uA,所以输入端可以视为等效开路。
电压采样电路图
电压采样电路如上图所示。
电压放大增益计算
假设上图中Vcc为48V,R1 = 47K,R2 = 1K。则根据电阻分压,Vi = 48 * (1/48)=1V。
因为虚短:V+ = V-。 (式1)
因为虚断:反向输入端无电流输入输出,通过R3和R4的电流相等,假设电流为I,则由欧姆定律得:
I = Vout / (R3 + R4)。
由图和(式1)知:Vi = V+ = V- = R4上的分压。
即:Vi = I * R4
即:
Vi已知,只要保证Vout在0~3.3V之间就可以进行电压的采集,进而对电路中电阻阻值进行设置。
电流采样电路图
电流采样电路图如上图所示。
电流放大增益计算
ADC采集电流实际上还是采集电压,如上图,R9就是电流采样电阻。采集R9两端电压,然后根据欧姆定律得到电流值。
先假设:V = i * R9。 (式1)
由虚断知:运放输入端没有电流流过,则流过R5和R8的电流相等;R6和R7的电流相等。
则有如下公式:
由虚短知:Vx = Vy (式3)
联合(式1)和图可知:V1 = V2 + V。 (式4)
将(式4)和(式3)带入(式2)的第一个等式得:
假设!!R5 = R6。R7 = R8。
(式5)-((式2)的第二个等式)可得到:
进而得到:
因为电流范围已知,所以V就已知,然后R5和R6相等(自由设置),R8和R7相等(自由设置)。
只要保持Vout在0~3.3V之间,就可以对电路电阻进行设置。
举报