3.2、验证
ido@ido:~$ python3
Python 3.8.10 (default, May 26 2023, 14:05:08)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information. >>> import cv2
>>>
验证无误安装完成
三、软件代码实现
# -*- coding: utf-8 -*-
import glob
import cv2
#==============准备数据========================
#读取待识别图像
o=cv2.imread("image/test2/3.bmp",0)
# images用于存储模板
images = []
# 遍历指定目录下所有子目录及模板图像
for i in range(10):
images.extend(glob.glob('image/'+str(i)+'/*.*'))
#=============计算匹配值函数=====================
def getMatchValue(template,image):
#读取模板图像
templateImage=cv2.imread(template)
#模板图像色彩空间转换,BGR-->灰度
templateImage = cv2.cvtColor(templateImage, cv2.COLOR_BGR2GRAY)
#模板图像阈值处理, 灰度-->二值
ret, templateImage = cv2.threshold(templateImage, 0, 255, cv2.THRESH_OTSU)
# 获取待识别图像的尺寸
height, width = image.shape
# 将模板图像调整为与待识别图像尺寸一致
templateImage = cv2.resize(templateImage, (width, height))
#计算模板图像、待识别图像的模板匹配值
result = cv2.matchTemplate(image, templateImage, cv2.TM_CCOEFF)
# 将计算结果返回
return result[0][0]
#===============计算最佳匹配值及模板序号======================
# matchValue用于存储所有匹配值
matchValue = []
# 从images中逐个提取模板,并将其与待识别图像o计算匹配值
for xi in images:
d = getMatchValue(xi,o)
matchValue.append(d)
# print(distance) #测试语句:看看各个距离值
# 获取最佳匹配值
bestValue=max(matchValue)
# 获取最佳匹配值对应模板编号
i = matchValue.index(bestValue)
# print(i) #测试语句:看看匹配的模板编号
#===============计算识别结果======================
#计算识别结果
number=int(i/10)
#===============显示识别结果======================
print("识别结果:数字",number)
四、数据库