1、dispachPython 天然支持多态,但使用 dispatch 可以让你的代码更加容易阅读。
安装:
- pip install multipledispatch
复制代码
使用:
- >>> from multipledispatch import dispatch
- >>> @dispatch(int, int)
- ... def add(x, y):
- ... return x + y
- >>> @dispatch(object, object)
- ... def add(x, y):
- ... return "%s + %s" % (x, y)
- >>> add(1, 2)
- 3
- >>> add(1, 'hello')
- '1 + hello'
复制代码
2、clickclick 可以很方便地让你实现命令行工具。
安装:
使用:demo2.py :
import click
- @click.command()
- @click.option('--count', default=1, help='Number of greetings.')
- @click.option('--name', prompt='Your name',
- help='The person to greet.')
- def hello(count, name):
- """Simple program that greets NAME for a total of COUNT times."""
- for x in range(count):
- click.echo(f"Hello {name}!")
- if __name__ == '__main__':
- hello()
复制代码
运行结果:
- ❯ python demo2.py --count=3 --name=joih
- Hello joih!
- Hello joih!
- Hello joih!
- ❯ python demo2.py --count=3
- Your name: somenzz
- Hello somenzz!
- Hello somenzz!
- Hello somenzz!
复制代码
3、celery分布式的任务队列,非 Celery 莫属。
f rom celery import Celery
- app = Celery('tasks', broker='pyamqp://guest@localhost//')
- @app.task
- def add(x, y):
- return x + y
复制代码
4、deprecated这个相信大家在使用别的包时都遇到过,当要下线一个老版本的函数的时候就可以使用这个装饰器。
安装:
使用:demo4.py
- from deprecated import deprecated
- @deprecated ("This function is deprecated, please do not use it")
- def func1():
- pass
- func1()
复制代码
运行效果如下:
- ❯ python demo4.py
- demo4.py:6: DeprecationWarning: Call to deprecated function (or staticmethod) func1. (This function is deprecated, please do not use it)
- func1()
复制代码
5、deco.concurrent安装:
使用 DECO 就像在 Python 程序中查找或创建两个函数一样简单。我们可以用 @concurrent 装饰需要并行运行的函数,用 @synchronized 装饰调用并行函数的函数,使用举例:
- from deco import concurrent, synchronized
- @concurrent # We add this for the concurrent function
- def process_url(url, data):
- #Does some work which takes a while
- return result
- @synchronized # And we add this for the function which calls the concurrent function
- def process_data_set(data):
- results = {}
- for url in urls:
- results[url] = process_url(url, data)
- return results
复制代码
6、cachetools缓存工具
安装:
使用:
- from cachetools import cached, LRUCache, TTLCache
- # speed up calculating Fibonacci numbers with dynamic programming
- @cached(cache={})
- def fib(n):
- return n if n < 2 else fib(n - 1) + fib(n - 2)
- # cache least recently used Python Enhancement Proposals
- @cached(cache=LRUCache(maxsize=32))
- def get_pep(num):
- url = 'http://www.python.org/dev/peps/pep-%04d/' % num
- with urllib.request.urlopen(url) as s:
- return s.read()
- # cache weather data for no longer than ten minutes
- @cached(cache=TTLCache(maxsize=1024, ttl=600))
- def get_weather(place):
- return owm.weather_at_place(place).get_weather()
复制代码
7、retry重试装饰器,支持各种各样的重试需求。
安装:
使用:
- import random
- from tenacity import retry
- @retry
- def do_something_unreliable():
- if random.randint(0, 10) > 1:
- raise IOError("Broken sauce, everything is hosed!!!111one")
- else:
- return "Awesome sauce!"
- @retry(stop=stop_after_attempt(7))
- def stop_after_7_attempts():
- print("Stopping after 7 attempts")
- raise Exception
- @retry(stop=stop_after_delay(10))
- def stop_after_10_s():
- print("Stopping after 10 seconds")
- raise Exception
- @retry(stop=(stop_after_delay(10) | stop_after_attempt(5)))
- def stop_after_10_s_or_5_retries():
- print("Stopping after 10 seconds or 5 retries")
- raise Exception
复制代码
|