我们来看图1中的无源线性单端口电路,它包括电阻、电容和电感。
图1:(a)无源单端口电路 (b)自然(或无源)开路响应vn(t)。 如果我们施加一个测试电流 I(s),单端口电路将产生电压 V(s),使得 V(s)=Z(s)I(s),其中I(s)和V(s)是所施加电流和所产生电压的拉普拉斯变换,s是以1/sec为单位的复数频率。阻抗Z(s)是s的有理函数形式,即分子多项式N(s)与分母多项式D(s)的比值:
公式N(s)=0的根被称为Z(s)的零点,表示为z1,z2,……;而公式D(s)=0的根被称为Z(s)的极点,表示为p1、p2、……极点和零点统称为根,也称为临界频率。例如,阻抗: 当s=0时,其值为零;当s=-3±j4时,它具有复共轭极点对。可以用根来表达它,即: 如果我们绘制|Z(s)|相对于s的幅度曲线,则可以直观理解零点和极点的含义。所得到的曲线就好像在s平面上竖起的帐篷,在零点处接触s平面,而在极点处其高度变为无限。 图2:Z(s)=(10Ω)s/(s2+6s+25)的幅度图。(通过在虚轴上计算|Z|获得的分布曲线图显示出单端口电路的交流响应。) 为了找到极点的物理感觉,我们在s接近极点pk时施加电流I(s),就可以用相当小的I(s)获得给定的电压V(s)。s越接近极点pk,获得给定电压V(s)所需的电流I(s)越小。在s→pk的极限状态下,即使电流为零,即开路,单端口电路也会获得一个非零的供电电压(见图1b)!这个电压称为自然响应或无源响应,因为单端口电路可利用储存在其电容和电感内部的能量来产生电压。这些能量在电阻中消耗尽了,在无源单端口的情况下,它们将随时间呈指数级衰减。实际上,系统理论预测到自然响应符合以下表达式: 其中a1,a2,……,是取决于存储能量的合适系数(以V为单位),Z(s)的极点是指数中时间常数的倒数。 那么Z(s)的零点呢?我们来看图3,它表示图1的两种情况。现在施加的信号是电压V(s),而响应是电流I(s)=[1/Z(s)]V(s),这表明Z(s)的零点现在成为1/Z(s)的极点。通过双重推理,在s→zk的极限状态下,即使施加零电压(短路),单端口电路也将提供非零电流(参见图3b)!该电流称为自然响应或无源响应,因为单端口电路利用储存在其电容和电感内部的能量来产生电流。系统理论预测自然短路电流响应符合以下表达式: 其中b1,b2,……,是取决于存储能量的合适系数(以安培为单位),Z(s)的零点是指数中时间常数的倒数。 图3:(a)无源单端口电路(b)自然(或无源)短路响应in(t)。 总而言之,单端口电路的自然响应由其阻抗Z(s)的根控制:极点控制开路电压响应vn(t),而零点控制短路电流响应in(t)。在某种程度上,根就像是单端口电路的DNA。例如,我们来看图4的单端口电路。在t=0时,电容两端的电压为9V,顶部为正,t>0时它的自然响应是什么?可以看出单端口电路呈现的阻抗是: 显然,z1=–1/(R1C)=-1/(10ms),p1=-1/[(R1+R2)C]=-1/(30ms)。此外,a1=[20/(10+20)]9=6V且b1=9/10=0.9mA。所以:
图4:找出(a)开路和(b)短路的自然响应。 单极点控制 在图5a的电路中,由vn表示的节点和地之间的阻抗为Z(s)=R||(1/sC)=R/(1+sRC),因此在s=-1/(RC)=-1/(1ms)时电路具有一个极点。假设vn(0)=1V,我们可以得到:
图5:(a)基本电路(b)相同的电路,但可以控制极点。 无论怎样选择R和C的值,该电路的极点将始终为负。我们希望找到控制它的方法,以便将其驱动为零甚至使其成为正的。图5b示出的电路可以完成这项工作。非反相放大器检测vn并输出电压: (1 + R2/R1)vn = (1 + k)vn k = R2/R1 其中R2代表电位器在其左端和游标之间的部分。对于给定的元件值,从左端到右端改变游标将使k在0 对于给定的元件值,我们有Req=(10kΩ)/(1–k),因此极点位置现在为s=-1/(ReqC)=-(1–k)/(1ms),公式(4)变为:
我们讨论一下电路作为游标设置函数的工作原理,使用图6中的PSpice电路来显示随后的自然响应类型。 当游标一直向左(k=0)时,R3上的电压降为零,因此R3带有零电流,C通过R放电,时间常数为1ms,如公式(4)所示; 将游标向右移动时,R3将电流提供给C,只要该电流小于R汲取的电流,C仍然会呈指数放电,但速度比k=0时要慢; 当游标处于中间(k=1)时,R3输出的电流等于R汲取的电流,电容的净电流为零,因此电容电压保持恒定; 将游标进一步向右移动(k>1),使得源电流大于汲取电流,因此C呈指数充电,从而产生不同的响应,直到运放饱和。
图6:PSpice电路显示不同k值的自然响应,假设电容最初充电电压为1V。 图7描绘了随k变化的极点位置。
图7:极点轨迹是k的函数。 极点对控制 在图8a的电路中,干扰产生自然响应vn(t)的阻抗是:
D(s)的阶数表明我们现在有一个二阶系统。对于这样的系统,D(s)通常以更方便的形式表达: 其中ζ称为阻尼比,ω0称为无阻尼固有频率。设D(s)=0,可以得到极点对:
比较公式(8)和(9),我们发现图8a的电路具有:ζ=1.5和ω0=1/(RC)=1/(1ms)。代入公式(10)得到极点对p1=-1/(0.3818ms),p2=-1/(2.618ms),表示vn(t)由一对指数衰减组成,因为电阻消耗了存储在电容中的电能。 为简单起见,假设图8a的RC对完全相同。可以看出,无论我们怎样选择元件值,该电路的极点将始终为负实数。 图8:(a)基本电路(b)相同的电路,但可以控制极点。 我们希望可以找到方法来控制它们在复平面上的位置,以便将它们放置在虚轴上,甚至使它们溢出到复平面的右半部分。图8b示出了可完成这项工作的电路。其中最左边的电容被提升离地,由一个非反相放大器驱动,该放大器检测到vn并输出电压(1+R2/R1)vn=(1+k)vn,k如公式(5)所示。对于给定的元件值,从左端到右端改变游标将使k在0 使用熟悉的电路分析技巧,我们发现干扰产生自然响应vn(t)的阻抗为: 表明2-k=2ζ,或: ω0=1/(RC)=1/(1ms)。我们来讨论电路随游标设置变化的工作原理,同样,使用图9a的PSpice电路来显示随后的自然响应类型,如图9b所示。 随着游标一直向左滑动(k=0),可以得到ζ=1。公式(10)得到重合的极点对p1=p2=-1/(1ms)。在这种情况下,系统理论预测该类型的自然响应为: 其中a和b是适合的系数,取决于t=0时存储在电容中的能量。如图9b所示,在初始浪涌之后,自然响应呈指数衰减至趋于零。 设k=2,得到ζ=0,所以公式(10)预测纯虚极点对p1,2=±j103,其中j是虚数单位(j2=-1)。使用欧拉公式exp(jα)+exp(–jα)=2cosα,可以看出自然响应现在采用这种形式: 图9:PSpice电路显示对应于不同k值的自然响应,假设在t=0时,Ca充电到1V,Cb放电。 其中a和φ是适合的系数,取决于t=0时存储在电容中的能量。其结果是持续振荡,也称为无阻尼振荡(因此称为ω0)。物理上,运算放大器注入单端口电路的能量等于端口电阻消耗的能量,这让电容以某种乒乓方式交换能量。 ●对于00,所以现在公式(10)可以预测一对复共轭极点。例如,当k=1.5时,由公式(12)得到ζ=0.25,因此由公式(10)得到:
代入公式(2),合并,并再次使用欧拉公式,将得到自然响应公式: 其中a和φ是适合的系数,取决于t=0时存储在电容中的能量。 如图9b所示,对于k=1.5,电容仍然以乒乓方式开始交换能量,但是该能量逐渐被电阻消耗,从而产生阻尼振荡。 ●将k提高到2以上,使运算放大器注入的能量超过端口电阻可以消耗的能量,引起发散振荡,如图9b中k=2.1所示。振荡将持续增长到运算放大器饱和为止。 图10示出了随k变化的根轨迹。总而言之,无源电路的极点位于复平面的左半部分。为了使它们溢出到右半平面,我们需要一个有源元件,例如示例中的运算放大器,从自己的电源端获取能量并将其注入单端口电路。右半平面的极点导致发散的响应,最终使放大器饱和。 图10:(a)作为k的函数的根轨迹(b)在阻尼响应状态下的极点对。 一个流行应用 我们的电路控制极点对位置的能力可用于产生持续的正弦波。为此,它需要满足两个条件。 ●为了可以自己启动,电路的初始配置必须使其极点对位于复平面的右半部分(k>2.0)。 图11:在虚轴上放置并保持一对极点,以产生正弦波。 即使两个电容最初都放电,运算放大器的一点噪声输入就足以触发不断增长的振荡。 ●一旦振荡达到所需幅度,就必须采取一些机制进行干预,以防止其进一步增长,并将其保持在该幅度。这需要将极点对放置在虚轴(k=2.0)上,并自动保持极点在其上,不管元件老化和漂移,或者任何其它干扰。 在图11a中,电源接通时,两个二极管仍然关闭,因此k=R2/R1=22/10=2.2,表明振荡增加。随着振荡的增加,二极管在交替的半周期内逐渐导通,所以k=[R2||(R3+rd)]/R1,其中rd是动态二极管电阻(rd随二极管电流而减小)。在rd《R3的极限情况下,我们将得到k=(22||100)/10=1.8,表示电路可在1.8 假如由于某种原因实际幅度超过期望值,rd将减小并导致k降至2.0以下,从而抵消幅度上升。相反,如果幅度降至所需值以下,rd将增加并使k上升到2.0以上,从而抵消幅度下降。总之,只有k=2.0时电路才能找到它的“和平”状态。
|