完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
MATLAB常用的基本数学函数 abs(x):纯量的绝对值或向量的长度 angle(z):复数z的相角(Phase angle) sqrt(x):开平方 real(z):复数z的实部 imag(z):复数z的虚部 conj(z):复数z的共轭复数 round(x):四舍五入至最近整数 fix(x):无论正负,舍去小数至最近整数 floor(x):地板函数,即舍去正小数至最近整数 ceil(x):天花板函数,即加入正小数至最近整数 rat(x):将实数x化为分数表示 rats(x):将实数x化为多项分数展开 sign(x):符号函数 (Signum function)。 当x<0时,sign(x)=-1; 当x=0时,sign(x)=0; 当x>0时,sign(x)=1。 rem(x,y):求x除以y的馀数 gcd(x,y):整数x和y的最大公因数 lcm(x,y):整数x和y的最小公倍数 exp(x):自然指数 pow2(x):2的指数 log(x):以e为底的对数,即自然对数或 log2(x):以2为底的对数 log10(x):以10为底的对数 ==================================================== MATLAB常用的三角函数 sin(x):正弦函数 cos(x):馀弦函数 tan(x):正切函数 asin(x):反正弦函数 acos(x):反馀弦函数 atan(x):反正切函数 atan2(x,y):四象限的反正切函数 sinh(x):超越正弦函数 cosh(x):超越馀弦函数 tanh(x):超越正切函数 asinh(x):反超越正弦函数 acosh(x):反超越馀弦函数 atanh(x):反超越正切函数 ==================================================== 适用於向量的常用函数有: min(x): 向量x的元素的最小值 max(x): 向量x的元素的最大值 mean(x): 向量x的元素的平均值 median(x): 向量x的元素的中位数 std(x): 向量x的元素的标准差 diff(x): 向量x的相邻元素的差 sort(x): 对向量x的元素进行排序(Sorting) length(x): 向量x的元素个数 norm(x): 向量x的欧氏(Euclidean)长度 sum(x): 向量x的元素总和 prod(x): 向量x的元素总乘积 cumsum(x): 向量x的累计元素总和 cumprod(x): 向量x的累计元素总乘积 dot(x, y): 向量x和y的内积 cross(x, y): 向量x和y的外积 (大部份的向量函数也可适用于矩阵,详见下述。) ==================================================== MATLAB的查询命令: help:用来查询已知命令的用法。例如已知inv是用来计算反矩阵,键入 help inv即可得知有关inv命令的用法。(键入help help则显示help的用 法,请试看看!) lookfor:用来寻找未知的命令。例如要寻找计算反矩阵的命令,可键入 lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。找到所需的 命令後,即可用help进一步找出其用法。(lookfor事实上是对所有在搜寻 路径下的M档案进行关键字对第一注解行的比对,详见後叙 =============================================== 下表即为MATLAB常用到的永久常数。 MATLAB的永久常数 i或j:基本虚数单位(即) eps:系统的浮点(Floating-point)精确度 inf:无限大, 例如1/0 nan或NaN:非数值(Not a number),例如0/0 pi:圆周率 p(= 3.1415926...) realmax:系统所能表示的最大数值 realmin:系统所能表示的最小数值 nargin: 函数的输入引数个数 nargin: 函数的输出引数个数 ==================================================== 结束MATLAB 有三种方法可以结束MATLAB: 1.键入exit 2.键入quit 3.直接关闭MATLAB的命令视窗(Command window) ==================================================== MATLAB基本绘图函数 plot: x轴和y轴均为线性刻度(Linear scale) loglog: x轴和y轴均为对数刻度(Logarithmic scale) semilogx: x轴为对数刻度,y轴为线性刻度 semilogy: x轴为线性刻度,y轴为对数刻度 ==================================================== 若要画出多条曲线,只需将座标对依次放入plot函数即可: plot(x, sin(x), x, cos(x)); 若要改变颜色,在座标对後面加上相关字串即可: plot(x, sin(x), 'c', x, cos(x), 'g'); 若要同时改变颜色及图线型态(Line style),也是在座标对後面加上相 关字串即可: plot(x, sin(x), 'co', x, cos(x), 'g*'); ==================================================== plot绘图函数的叁数 字元 颜色 字元 图线型态 y 黄色 . 点 k 黑色 o 圆 w 白色 x x b 蓝色 + + g 绿色 * * r 红色 - 实线 c 亮青色 : 点线 m 锰紫色 -. 点虚线 -- 虚线 ==================================================== 图形完成後,我们可用axis([xmin,xmax,ymin,ymax])函数来调整图轴的范 围: axis([0, 6, -1.2, 1.2]); 此外,MATLAB也可对图形加上各种注解与处理: xlabel('Input Value'); % x轴注解 ylabel('Function Value'); % y轴注解 title('Two Trigonometric Functions'); % 图形标题 legend('y = sin(x)','y = cos(x)'); % 图形注解 grid on; % 显示格线 我们可用subplot来同时画出数个小图形於同一个视窗之中: subplot(2,2,1); plot(x, sin(x)); subplot(2,2,2); plot(x, cos(x)); subplot(2,2,3); plot(x, sinh(x)); subplot(2,2,4); plot(x, cosh(x)); MATLAB还有其他各种二维绘图函数,以适合不同的应用,详见下表。 ==================================================== 其他各种二维绘图函数: bar 长条图 errorbar 图形加上误差范围 fplot 较精确的函数图形 polar 极座标图 hist 累计图 rose 极座标累计图 stairs 阶梯图 stem 针状图 fill 实心图 feather 羽毛图 compass 罗盘图 quiver 向量场图 ==================================================== 以下针对每个函数举例。 当资料点数量不多时,长条图是很适合的表示方式: close all; % 关闭所有的图形视窗 x=1:10; y=rand(size(x)); bar(x,y); 如果已知资料的误差量,就可用errorbar来表示。下例以单位标准差来做 资料的误差量: x = linspace(0,2*pi,30); y = sin(x); e = std(y)*ones(size(x)); errorbar(x,y,e) 对於变化剧烈的函数,可用fplot来进行较精确的绘图,会对剧烈变化处进 行较密集的取样,如下例: fplot('sin(1/x)', [0.02 0.2]); % [0.02 0.2]是绘图范围 若要产生极座标图形,可用polar: theta=linspace(0, 2*pi); r=cos(4*theta); polar(theta, r); 对於大量的资料,我们可用hist来显示资料的分 情况和统计特性。下面 几个命令可用来验证randn产生的高斯乱数分 : x=randn(5000, 1); % 产生5000个 ?=0,?=1 的高斯乱数 hist(x,20); % 20代表长条的个数 rose和hist很接近,只不过是将资料大小视为角度,资料个数视为距离,?⒂眉 昊嬷票硎荆? x=randn(1000, 1); rose(x); stairs可画出阶梯图: x=linspace(0,10,50); y=sin(x).*exp(-x/3); stairs(x,y); stems可产生针状图,常被用来绘制数位讯号: x=linspace(0,10,50); y=sin(x).*exp(-x/3); stem(x,y); stairs将资料点视为多边行顶点,并将此多边行涂上颜色: x=linspace(0,10,50); y=sin(x).*exp(-x/3); fill(x,y,'b'); % 'b'为蓝色 feather将每一个资料点视复数,并以箭号画出: theta=linspace(0, 2*pi, 20); z = cos(theta)+i*sin(theta); feather(z); compass和feather很接近,只是每个箭号的起点都在圆点: theta=linspace(0, 2*pi, 20); z = cos(theta)+i*sin(theta); compass(z); -- 3.基本XYZ立体绘图命令 在科学目视表示(Scientific visualization)中,三度空间的立体图是 一个非常重要的技巧。本章将介绍MATLAB基本XYZ三度空间的各项绘图命 令。 mesh和plot是三度空间立体绘图的基本命令,mesh可画出立体网状图, plot则可画出立体曲面图,两者产生的图形都会依高度而有不同颜色。下 列命令可画出由函数 形成的立体网状图: x=linspace(-2, 2, 25); % 在x轴上取25点 y=linspace(-2, 2, 25); % 在y轴上取25点 [xx,yy]=meshgrid(x, y); % xx和yy都是21x21的矩阵 zz=xx.*exp(-xx.^2-yy.^2); % 计算函数值,zz也是21x21的矩阵 mesh(xx, yy, zz); % 画出立体网状图 surf和mesh的用法类似: x=linspace(-2, 2, 25); % 在x轴上取25点 y=linspace(-2, 2, 25); % 在y轴上取25点 [xx,yy]=meshgrid(x, y); % xx和yy都是21x21的矩阵 zz=xx.*exp(-xx.^2-yy.^2); % 计算函数值,zz也是21x21的矩阵 surf(xx, yy, zz); % 画出立体曲面图 为了方便测试立体绘图,MATLAB提供了一个peaks函数,可产生一个凹凸有 致的曲面,包含了三个局部极大点及三个局部极小点,其方程式为: 要画出此函数的最快方法即是直接键入peaks: peaks z = 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ... - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ... - 1/3*exp(-(x+1).^2 - y.^2) 我们亦可对peaks函数取点,再以各种不同方法进行绘图。meshz可将曲面 加上围裙: [x,y,z]=peaks; meshz(x,y,z); axis([-inf inf -inf inf -inf inf]); waterfall可在x方向或y方向产生水流效果: [x,y,z]=peaks; waterfall(x,y,z); axis([-inf inf -inf inf -inf inf]); 下列命令产生在y方向的水流效果: [x,y,z]=peaks; waterfall(x',y',z'); axis([-inf inf -inf inf -inf inf]); meshc同时画出网状图与等高线: [x,y,z]=peaks; meshc(x,y,z); axis([-inf inf -inf inf -inf inf]); surfc同时画出曲面图与等高线: [x,y,z]=peaks; surfc(x,y,z); axis([-inf inf -inf inf -inf inf]); contour3画出曲面在三度空间中的等高线: contour3(peaks, 20); axis([-inf inf -inf inf -inf inf]); contour画出曲面等高线在XY平面的投影: contour(peaks, 20); plot3可画出三度空间中的曲线: t=linspace(0,20*pi, 501); plot3(t.*sin(t), t.*cos(t), t); 亦可同时画出两条三度空间中的曲线: t=linspace(0, 10*pi, 501); plot3(t.*sin(t), t.*cos(t), t, t.*sin(t), t.*cos(t), -t); y(2:4)-1 % 取出y的第二至第四个元素来做运算 同样的方法可用於产生公差为1的等差数列:x = 7:16 x = 7:3:16 % 公差为3的等差数列 x = linspace(4, 10, 6) % 等差数列:首项为4,末项为10,项数为6 若要重新安排矩阵的形状,可用reshape命令:B = reshape(A, 4, 2) % 4是新矩阵的列数,2是新矩阵的行数 举例来说,下列命令会产生一个长度为6的调和数列(Harmonic sequence): x = zeros(1,6); % x是一个16的零矩阵 for i = 1:6, x(i) = 1/i; end for 圈可以是多层的,下例产生一个16的Hilbert矩阵h,其中为於第i 列、第j行的元素为: h = zeros(6); for i = 1:6, for j = 1:6, h(i,j) = 1/(i+j-1); end end format rat % 使用分数来表示数值 >>disp(x) 1 1/2 1/3 1/4 1/5 1/6 function output = fact(n) % FACT Calculate factorial of a given positive integer. output = 1; for i = 1:n, output = output*i; end 其中fact是函数名,n是输入引数,output是输出引数,而i则是此函数用 到的暂时变数。要使用此函数,直接键入函数名及适当输入引数值即可: MATLAB的函数也可以是递 式的(Recursive),也就是说,一个函数可以 呼叫它本身。举例来说,n! = n*(n-1)!,因此前面的阶乘函数可以改成递 式的写法: function output = fact(n)% FACT Calculate factorial of a given positive integer recursively. if n == 1, % Terminating condition output = 1; return; end output = n*fact(n-1); 在写一个递 函数时,一定要包含结束条件(Terminating condition),否则此函数将会一再呼叫自己,永远不会停止,直到电脑的 记忆体被耗尽为止。以上例而言,n==1即满足结束条件,此时我们直接将 output设为1,而不再呼叫此函数本身。 |
|
相关推荐
|
|
|
|
|
|
200圆!求助大佬给一份VSG并网和离网模式的simulink仿真
1365 浏览 0 评论
MATLAB(3)--矩阵的引用(sub2ind、ind2sub、reshape函数使用)
2176 浏览 0 评论
2520 浏览 0 评论
4073 浏览 1 评论
18351 浏览 0 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-11-5 23:23 , Processed in 0.728246 second(s), Total 77, Slave 58 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号