完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
Linux为是一个成熟而稳定的操作系统。将Linux植入嵌入式设备具有众多的优点,包括可剪裁和容易移植等,所以Linux操作系统在嵌入式领域获得了广泛的应用。嵌入式Linux一直是嵌入式领域的研究热点,与PC架构不同,嵌入式系统的硬件具有多样性和差异性,嵌入式系统的开发需要对特定系统进行硬件设计,同时还要针对这些硬件来编写驱动程序。Linux内核就是通过驱动程序来同外围设备打交道的,系统设计人员必须为每个设备编写驱动程序,否则设备无法在操作系统下正常工作。
1 设备驱动程序设计的基本概念与模型 设备驱动程序是操作系统内核与机器硬件之间的接口,它为应用程序屏蔽了硬件的细节,在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作,设计驱动程序是内核的一部分,可以实现以下功能: 对设备初始化和释放; 把数据从内核传送到硬件,以及从硬件读取数据; 读取应用程序传送给设备文件的数据,以及回送应用程序请求的数据; 检测和处理设备出现的错误。 前面已经提到驱动程序的作用,而编写驱动程序就是构造一系列可供应用程序调动的函数(包括open、release、read、write、llseek、ioctl等)。在用户自己的驱动程序中,首先要根据驱动程序的功能,实现file_operations结构中的函数,不需要的函数接口可以直接在file_operations结构中初始化为NULL;file_operations变量会在驱动程序初始化时注册到系统内部。当操作系统对设备操作时,会调用驱动程序注册的file_operations结构中的函数指针。 以下是嵌入式linux2.4设备驱动程序的最简模型。 具体实现前面定义的函数时,需注意下面几点: 1)在test_init函数中要通过调用register_chrdev()函数来向内核注册字符设备驱动程序。如果是块设备,则还需调用mmmap()进行地址空间的映射,再调用register_blkdev()函数来向内核注册块设备驱动程序,在Linux系统中,对中断的处理是属于系统核心部分,因而如果设备与系统之间以中断方式进行数据交换,则必须把该设备的驱动程序作为系统核心的一部分,也就是说设备驱动程序要通过调用request_irq()函数来申请中断,通过free_irq()函数来释放中断(在test_cleanup中实现)。 2)open()函数和release()函数的具体实现有着一定的对应性,在open()函数中主要是执行打开设备时的一些初始化代码,如果该驱动程序需要管理多个设备,那么还要获取从设备号,根据从设备号来判断需要操作的设备,其中,从设备号可通过调用函数MINOR(inode-》i_rdev)来获得,然后再调用宏MOD_INC_USE_COUNT来使得驱动程序使用计数器加1,而在release()函数中则要进行相反的处理。即调用宏MOD_DEC_USE_COUNT来减小驱动程序使用计数器。 3)归根到底,驱动函数的实现就是调用内核所支持的函数(包括内核提供的API和用户自己定义的寄存器操作函数)来完成对设备的操作,虽然嵌入式系统设备的种类众多,不同设备操作的具体实现方法不可能相同,但是Linux操作系统提供了一系列特殊API,为开发内核驱动程序带来了很大的方便,调用这些API时需要注意的是:通常情况下,应用程序是通过内核接口访问驱动程序的(这是驱动程序的主要使用方式),因此驱动程序需要与应用程序交换数据,但是操作系统内核和驱动程序在内核空间中运行,而用户程序在用户空间中运行,用户程序不能访问内核空间,操作系统内核和驱动程序也不能使用指针或memcpy()等常规的C库函与用户空间传输数据,造成这种状况的主要原因是linux操作系统使用了虚拟内存机制,使用了虚拟内存机制后,用户空间的内存可能被换出,当内核使用用户空间指针时,对应的页面可能已经不在内存中了,因此在使用调用函数时要注意:设备驱动程序在申请和释放内存时不是调用malloc()和free(),而调用kmalloc()和kfree();用于内核空间与用户空间进行数据拷贝的函数主要有access_ok()(检查某内存空间是否有权访问),copy_to_user()和put_usr()(内核函数向用户空间传输数据),copy_from_user()和get_user()(用户空间向内核空间传输数据);关于内核空间与I/O空间的数据交换,不同体系结构的处理器对I/O的处理方式也不同,x86系列处理器中,I/O与内存完成不同,它是分开编址的,访问它要使用专用的指令;而对ARM体系结构的处理器来说,则是不区分I/O和内存,统一编址的,可以使用同样的指令访问,在驱动程序中可以使用一系列函数来访问I/O口,如outb()、outw()、outl()inb()、inw()、inl()、out***()、outsw()、outsl()、in***()、insw()和insl()等。 2 Linux2.6与2.4内核驱动程序的区别 为了彻底防止对正在被使用的内核模块进行错误操作,linux2.6内核在加载和导出内核模块方面都较2.4内核有所改进,避免了用户执行将导致系统崩溃的操作(例如强制删除模块等)。同时,当驱动程序需要在多个文件中包含头文件时,不必定义宏来检查内核的版本。与2.4内核相比,2.6内核在可扩展性、吞吐率等方面有较大提升,其新特性主要包括:使用了新的调度器算法;内核抢占功能显著地降低了用户交互式应用程序;多媒体应用程序等类似应用程序的延迟;改进了线程模型以及对NPTL的支持,显著改善了虚拟内存在一定成程度负载下的性能;能够支持更多的文件系统;引进了内存池技术;支持更多的系统设备,在2.4内核中有约束大型系统的限制,其支持的每一类设备的最大数量为256,而2.6内核则彻底打破了这些限制,可以支持4095种主要的设备类型,且每个单独的类型又可以支持超过一百万个的子设备;支持反向映射机制(reverse mapping),内存管理器为每一个物理页建立一个链表,包含指向当前映射页中每个进程的页表条目的指针。该链表叫PTE链,它极大的提高了找到那些映射某个页的进程的速度。 Linux操作系统的设备驱动程序是在内核空间运行的程序,其中涉及很多内核的操作,随着Linux内核版本的升级,驱动程序的开发必然也要作出相应的修改,总之,在linux2.6内核上编写设备驱动程序时具体要注意以下几个方面: 1)Linux2.6内核驱动程序必须由MODULE_LICENSE(“Dual BSD/GPL”)语句来定义许可证,而不能再用2.4内核的MODULE_LICENSE(“GPL”)。否则,在编译时会出现警告提示。 2)Linux2.6内核驱动程序可以用int try_module_get(&module)来加载模块,用module_put()函数来卸载模块,而以前2.4内核使用的宏MOD_INC_USE_COUNT和MOD_DEC_USE_COUNT则可不用。 3)前面给出的字符型设备驱动程序模型中结构体file_operations的定义要采用下面的形式。这是因为在Linux内核中对结构体的定义形式发生了变化,不再支持原来的定义形式。 4)就字符型设备而言,test_open()函数中向内核注册设备的调用函数register_chrdev()可以升级为int register_chrdev_region(dev_t from,unsigned count,char * name),如果要动态申请主设备号可调用函数int alloc_chrdev_region(dev_t * dev,unsigned baseminor,unsigned count,char * name)来完成;原来的注册函数还可以用,只是不能注册设备号大于256的设备,同理,对于块设备和网络设备的注册函数也有着相对应的代替函数。 5)在声明驱动程序是否要导出符号表方面有着很大的变化。当驱动程序模块装入内核后,它所导出的任何符号都会变成公共符合表的一部分,在/proc/ksyms中可以看到这些新增加的符号。通常情况之下,模块只需实现自己的功能,不必导出任何符号,然而,如果有其他模块需要使用模块导出的符号时,就必须导出符号,只有显示的导出符号才能被其他模块使用,Linux2.6内核中默认不导出所有的符号,不必使用EXPORT_NO_SYMBOLS宏来定义;而在2.4内核中恰恰相反,它默认导出所有的符号,除非使用EXPORT_NO_SYMBOLS,因此在上面给出的范例中可以省略去该定义语句。 6)Linx内核统一了很多设备类型,同时也支持更大的系统和更多的设备,原来Linux2.4内核中的变量kdev_t已经被废除不可用,取而代之的是dev_t。它拓展到了32位,其中包括12位主设备号和20位次设备号。调用函数为unsigned int iminor(struct inode * inode)和unsigned int imajor(struct inode * inode),而不再用Linux2.4版本中的int MAJOR(kdev_t dev)和int MINOR(kdev_t dev)。 7)所有的内存分配函数不再包含在头文件中,而是包含在中,而原来的已经不存在。所以当在驱动程序中要用到函数kmalloc()或kfree()等内存分配函数时,就必须要定义头文件而不是。同时,前面提到的申请内存和释放内存函数的具体参数也有了一定的改变,包括:分配标志GFP_BUFFER被取消,取而代之的是GFP_NOIO和GFP_NOFS;新增了_GFP_REPEAT、_GFP_NOFAIL和_GFP_NORETRY分配标志等,使得内存操作更加方便。 8)因为内核中有些地方的内存分配是不允许失败的,所以为了确保这种情况下得成功分配,linux2.6版本内核中开发了一种称为“内存池”的抽象。内存池其实相当于后备的高速缓存,以便在紧急状态下使用。要使用内存池的处理函数时,必须包含头文件。内存池处理函数主要有以下几个:mempool_t *mempool_create()、void*mempool_alloc()、void mempool_free()、int mempool_resize(); 另外值得一提的是:2.6内核为了区别以.o为扩展名的常规对象文件,将内核模块的扩展名改为.ko,所以驱动程序最后是被编译为ko后缀的可加载模块,在应用程序中加载驱动程序模块时要注意。 结语 驱动程序的开发作为嵌入式linux系统开发过程当中最重要的环节之一,与硬件特性和操作系统的内核有着紧密的联系。随着linux内核版本的升级,内核驱动程序必然要作出相应的改进,相信随着嵌入式Linux系统在各个领域中的广泛应用,具有可抢占实时性的Linux2.6内核必定会在嵌入式领域大显身手。本文会对广大的驱动程序开发人员有一定的帮助。 |
|
|
|
只有小组成员才能发言,加入小组>>
12180 浏览 2 评论
4499 浏览 3 评论
3750 浏览 5 评论
9754 浏览 47 评论
4592 浏览 9 评论
746浏览 0评论
556浏览 0评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-22 22:31 , Processed in 0.683579 second(s), Total 54, Slave 45 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号