电路功能
图 3 中的波形示出了 3.3 V 电压轨启动时的结果。当输入电压上升时,Q2 的栅极电压也升高,因而把 Q1 的栅极拉至低电平。Q1 处于强化状态,允许完整的 3.3 V 电压到达 LTC3643,将 Q1体二极管旁路。最后,Q2 的栅极电压降至阈值电平以下且 Q2关断,此时 LTC3643 全面运行并控制着 Q1 的栅极。
LTC3643 的多功能性在这里展现出来:特别是它能够限制用于给存储电容器充电的升压型转换器的充电电流。在必须尽量减小总电流的场合中,例如:当存在长导线或高阻抗电压电源时,可把升压电流设定在较低的水平,以最大限度减轻充电电流对输入压降的影响。这点对 3.3 V 电压轨尤为重要。在图 2 中,0.05 Ω 电阻器 RS 为升压型转换器充电电流设定了一个 0.5 A(10.5 A 负载) 的限值 (最大可能设定限值为 2 A);其余的电流则输送至负载。

图 3. 上电时 3.3 V 电压轨的波形图 4 示出了失去 3.3 V 电压轨时的波形。当输入电压下降时,Q2 的栅极电压保持不变 (接近于地电位),且 Q2 处于关断状态。与此相反,Q1 的栅极电压则急剧上升至 3.3 V。这把 Q1 关断,由 Q1 的体二极管发挥隔离二极管的作用,从而使负载与输入分离。此时备份电源接管供电,LTC3643 通过释放存储电容器的电能以给关键负载提供 3.3 V。

图 4. 断电时 3.3 V 电压轨的波形结论
本文介绍的电路使 LTC3643 可用作一款针对 3.3 V 电压轨的备份电源解决方案。LTC3643 采用低成本电解电容器作为储能元件,简化了备份电源。