图 4:GraphSAGE算法的数学模型
对于每一个待处理的目标节点xv,GraphSAGE 执行下列操作:
1)通过邻居采样函数N(v),采样子图(subgraph)中的节点
2)聚合被采样的邻节点特征,聚合函数可以为mean()、stm()或者 poing()等
3)将聚合结果与上一次迭代的输出表征合并,并以Wk做卷积
4)卷积结果做非线性处理
5)迭代若干次以结束当前第k层所有邻节点的处理
6)将第k层迭代结果做归一化处理
7)迭代若干次以结束所有K层采样深度的处理
8)最终迭代结果zv即为输入节点xv的嵌入(embedding)
4. GNN加速器设计挑战
GNN的算法中涉及到大量的矩阵计算和内存访问操作,在传统的x86架构的服务器上运行此算法是非常低效的,表现在速度慢,能耗高等方面。
新型GPU的应用,可以为GNN的运算速度和能效比带来显著收益。然而GPU内存扩展性的短板,使其无法胜任海量节点Graph的处理;GPU的指令执行方式,也造成了计算延迟过大并且不可确定,无法胜任需要实时计算Graph的场景。
如上所述种种设计挑战的存在,使得业界急需一种可以支持高度并发实时计算、巨大内存容量和带宽、以及在数据中心范围可扩展的GNN加速解决方案。
5. GNN加速器的FPGA设计方案
Achronix 公司推出的 Speedster7t系列高性能FPGA,专门针对数据中心和机器学习工作负载进行了优化,消除了CPU、GPU以及传统 FPGA 存在的若干性能瓶颈。Speedster7t FPGA 基于台积电的 7nm FinFET 工艺,其架构采用革命性的新型 2D 片上网络 (NoC),独创的机器学习处理器矩阵 (MP),并利用高带宽 GDDR6 控制器、400G 以太网和 PCI Express Gen5 接口,在保障ASIC 级别性能的同时,为用户提供了灵活的硬件可编程能力。下图展示了Speedster7t1500高性能FPGA的架构。
图5: Achronix Speedster7t1500 高性能FPGA 架构
如上所述种种特性,使得Achronix Speedster7t1500 FPGA器件为GNN加速器设计中所面临的各种挑战,提供了完美的解决方案。
表1:GNN设计挑战与Achronix的Speedster7t1500 FPGA解决方案
5.1 GNN加速器顶层架构
本GNN加速器针对GraphSAGE进行设计,但其架构具有一定的通用性,可以适用于其他类似的GNN算法加速,其顶层架构如下图所示。
图6: GNN加速器顶层架构
图中GNN Core为算法实现的核心部分,其设计细节将在下文展开谈论;RoCE-ite为RDMA协议的轻量级版本,用于通过高速以太网进行远程内存访问,以支持海量节点的Graph计算,其设计细节将在本公众号的后续文章中讨论;400GE以太网控制器用来承载RoCE-ite协议;GDDR6用于存放GNN处理过程中所需的高速访问数据;DDR4作为备用高容量内存,可以用于存储相对访问频度较低的数据,比如待预处理的Graph;PCIe Gen5x16提供高速主机接口,用于与服务器软件交互数据;上述所有模块,皆通过NoC片上网络来实现高速互联。
5.2 GNN Core 微架构
在开始讨论GNN Core 微架构之前,我们先回顾一下本文第3节中的GraphSAGE算法,其内层循环的聚合以及合并(包含卷积)等两个操作占据了算法的绝大部分计算和存储器访问。通过研究,我们得到这两个步骤的特征如下:
表2:GNN算法中聚合与合并操作对比
可以看出,聚合操作与合并操作,其对计算和存储器访问的需求完全不同。聚合操作中涉及到对邻节点的采样,然而Graph属于非欧氏数据类型,其大小维度不确定且无序,矩阵稀疏,节点位置随机,所以存储器访问不规则并难以复用数据;在合并操作中,其输入数据为聚合结果(节点的低维表征)以及权重矩阵,其大小维度固定,存储位置规则线性,对存储器访问不存在挑战,但是矩阵的计算量非常大。
基于以上分析,我们决定在GNN Core加速器设计中用两种不同的硬件结构来处理聚合操作与合并操作,功能框图如下图所示:
图7: GNN Core功能框图
聚合器(Aggregator):通过SIMD(单指令多数据处理器)阵列来对Graph进行邻居节点采样并进行聚合操作。其中的“单指令”可以预定义为mean()均值计算,或者其他适用的聚合函数;“多数据”则表示单次mean()均值计算中需要多个邻居节点的特征数据作为输入,而这些数据来自于子图采样器(Subgraph Samper);SIMD阵列通过调度器Agg Scheduer做负载均衡;子图采样器通过NoC从GDDR6或DDR4读回的邻接矩阵和节点特征数据h0v,分别缓存在Adjacent ist Buffer和Node Feature Buffer之中;聚合的结果hkN(v)存储在Agg Buffer之中。
合并器(Combinator):通过脉动矩阵PE来执行聚合结果的卷积操作;卷积核为Wk权重矩阵;卷积结果通过ReU激活函数做非线性处理,同时也存储在Par
tia Sum Buffer中以方便下一轮迭代。
合并的结果通过2BN归一化处理之后,即为最终的节点表征hkv。
在比较典型的节点分类预测应用中,该节点表征hkv可以通过一个全连接层(FC),以得到该节点的分类标签。此过程属于传统的机器学习处理方法之一,没有在GraphSAGE论文中体现,此设计中也没有包含这个功能。
6. 结论
本文深入讨论了GraphSAGE GNN 算法的数学原理,并从多个维度分析了GNN加速器设计中的技术挑战。作者通过分解问题并在架构层面逐一解决的方法,综合运用Achronix Speedster7t1500 FPGA所提供的竞争优势,创造了一个性能极佳且高度可扩展的GNN加速解决方案。
`