完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
嵌入式系统发展呈现如下特点: ·由8位处理向32位过渡 ·由单核向多核过渡 ·向网络化功能发展 ·MCU、FPGA、ARM、DSP等齐头并进 ·嵌入式操作系统呈多元化趋势 所有的嵌入式处理器都是基于一定的架构的,即IP核(Intellectual Property,知识产权),生产处理器的厂家很多,但拥有IP核的屈指可数。有自己的IP核,光靠卖IP核即可坐拥城池。嵌入式系统的架构有专有架构和标准架构之分,在MCU(微控制器)产品上,像瑞萨(Renesas)、飞思卡尔(Freescale)、NEC都拥有自己得专有IP核,而其他嵌入式处理器都是基于标准架构。
标准的嵌入式系统架构有两大体系,目前占主要地位的是所谓RISC(Reduced Instruction Set Computer,精简指令集计算机)处理器。RISC体系的阵营非常广泛,从ARM、MIPS、PowerPC、ARC、Tensilica等等,都是属于RISC处理器的范畴。不过这些处理器虽然同样是属于RISC体系,但是在指令集设计与处理单元的结构上都各有不同,因此彼此完全不能兼容,在特定平台上所开发的软件无法直接为另一硬件平台所用,而必须经过重新编译。 其次是CISC(Complex Instruction Set Computer,复杂指令集计算机)处理器体系,我们所熟知的Intel的X86处理器就属于CISC体系,CISC体系其实是非常低效率的体系,其指令集结构上背负了太多包袱,贪大求全,导致芯片结构的复杂度被极大的提升。过去被应用在嵌入式系统的X86处理器,多为旧世代的产品,比如说,工业计算机中仍可常见数年前早已退出个人计算机市场的Pentium3处理器。由于此世代的产品效能与功耗比可以说是过去X86体系的甜蜜点,加上已经被市场长久验证,稳定性高,故常被应用于效能需求不高,但稳定性要求高的应用中,如工控设备等产品。 1、RISC家族之ARM处理器 ARM 公司于1991年成立于英国剑桥,主要出售芯片设计技术的授权。目前,采用ARM技术智能财产(IP)核心的处理器,即我们通常所说的ARM处理器,已遍及工业控制、消费类电子产品、通信系统、网络系统、无线系统等各类产品市场,基于ARM技术的处理器应用约占据了32位RISC微处理器75%以上的市场,ARM技术不止逐步渗入到我们生活的各个方面,我们甚至可以说,ARM于人类的生活环境中,已经是不可或缺的一环。 目前市面上常见的ARM处理器架构,可分为ARM7、ARM9以及ARM11,新推出的Cortex系列尚在进行开发验证,市面上还未有相关产品推出。ARM也是嵌入式处理器中首先推出多核心架构的厂商。ARM 首个多核心架构为ARM11 MPCore,架构于原先的ARM11处理器核心之上。ARM11核心是发布于2002年10月份,为了进一步提升效能,其管线长度扩展到8阶,处理单元则增加为预取、译码、发送、转换/MAC1、执行/MAC2、内存存取/MAC3和写入等八个单元,体系上属于 ARM V6指令集架构。ARM11采用当时最先进的0.13μm制造制程,运行频率最高可达500到700MHz。如果采用90nm制程,ARM11核心的工作频率能够轻松达到1GHz以上—对于嵌入式处理器来说,这显然是个相当惊人的程度,不过显然1GHz在ARM11体系中不算是个均衡的设定,因此几乎没有厂商推出达到1GHz的ARM11架构处理器。 ARM11的逻辑核心也经过大量的改进,其中最重要的当属“静/动态组合转换的预测功能”。ARM11的执行单元包含一个64位、4种状态的地址转换缓冲,它主要用来储存最近使用过的转换地址。当采用动态转换预测机制而无法在寻址缓冲内找到正确的地址时,静态转换预测功能就会立刻接替它的位置。在实际测试中,单纯采用动态预测的准确率为88%,单纯采用静态预测机制的准确率 只有77%,而ARM11的静/动态预测组合机制可实现92%的高准确率。针对高时脉速度带来功耗增加的问题,ARM11采用一项名为“IEM (Intelligent Energy Manager)”的智能电源管理技术,该技术可根据任务负荷情况动态调节处理器的电压,进而有效降低自身的功耗。这一系列改进让ARM11的功耗效能比得以继续提高,平均每MHz只需消耗0.6mW(有快取时为0.8mW)的电力,处理器的最高效能可达到 660 Dhrystone MIPS,远超过上一代产品。 至于ARM11 MPCore,其在架构上与ARM11同样属于 V6指令体系。根据不同应用的需要,MPCore可以被配置为1-4个处理器的组合方式,根据官方资料,其最高性能约可达到 2600 Dhrystone MIPS的程度。MPCore是标准的同质多核心处理器,组成MPCore的是4个基于ARM11架构的处理器核心,由于多核心设计的优点是在频率不变的情况下让处理器的性能获得明显提升,因此可望在多任务应用中拥有良好的表现,这一点很适合未来家庭消费电子的需要。例如,机顶盒在录制多个频道电视节目的同时,还可通过互联网收看数字视频点播节目、车内导航系统在提供导航功能的同时,仍然有余力可以向后座乘客播放各类视频码流等。 2、RISC家族之MIPS处理器 MIPS是美国历史悠久的RISC处理器体系,其架构的设计,也如美国人的性格一般,相当的大气且理想化。MIPS架构起源,可追溯到1980年代,斯坦福大学和伯克利大学同时开始RISC架构处理器的研究。 MIPS公司成立于1984年,随后在 1986年推出第一款R2000处理器,在1992年时被SGI所并购,但随着MIPS架构在桌面市场的失守,后来在1998年脱离了SGI,成为MIPS技术公司,并且在1999年重新制定 公司策略,将市场目标导向嵌入式系统,并且统一旗下处理器架构,区分为 32-bit以及64-bit两大家族,以技术授权成为主要营利模式。 MIPS除了在手机中应用得比例极小外,其在一般数字消费性、网络语音、个人娱乐、通讯、与商务应用市场有着相当不错的成绩,不过近年来因为其它IP授权公司的兴起,其占有比率稍有衰退。MIPS应用最为广泛的应属家庭视听电器(包含机顶盒)、网通产品以及汽车电子方面。对于MIPS,其核心技术强调的是多执行绪处理能力(Multiple issue,国内也通常称作多发射核技术,以下以此称谓)。一般来说,多核心与多发射是两个并不是互斥的体系,可以彼此结合,然而在嵌入式领域,ARM与MIPS这两大处理器IP厂商对这两个架构的态度不同,造成这两个架构在嵌入式市场上对抗的结果。 MIPS 的多发射体系为MIPS34K系列,此为32位架构处理器,从架构上来看,其实多发射核技术只是为了尽量避免处理单元闲置浪费而为的折衷手段,就是将处理器中的闲置处理单元,分割出来虚拟为另一个核心,以提高处理单元的利用率。在技术上,为了实现硬件多重处理,多核心与多发射两者对于软件最佳化的复杂度方面同样都比单核心架构来得复杂许多。 34K核心能执行现有的对称式二路SMP操作系统(OSes)与应用软件,通过操作系统的主动管理,现有的应用软件也能善用多发射处理能力。它亦能应用在多个执行线程各自有不同角色的(AMP或非对称式多重处理)环境下。此外,34K核心能设定一或两个虚拟处理组件(VPE)以及多至5个线程内容(Thread Content),提供相当高的设计弹性。MIPS的多发射在任务切换时,有多余的硬件缓存器可以记录执行状态,避免切换任务时,因为必须重新加载指令,或者是重新执行某部分的工作,造成整个执行线程的延迟。不过即便能够达到同时执行多个任务的能力,多发射处理器本质上仍然是单核心处理器,在单一执行绪面临高负载时,其它执行绪的处理时间就有可能会被压缩,甚至被暂停。而不同执行绪在执行的过程中,诸如内存锁定、解锁以及同步等处理过程在多发射体系上也会发生,因此在极端情况下,多发射的性能是明显比不上原生多核心架构的(以两个执行绪对两个核心的比较而言)。不过多发射体系的优点在于硬件效率高,理论上功耗也能有效降低。部分IC设计公司也推出了基于MIPS架构的平行架构多核心,形成兼具多核与多发射的应用架构,相信在未来这种体系将会纳入MIPS的原生架构当中,以应付更复杂的应用。 3、RISC家族之PowerPC PowerPC 是一种RISC多发射体系结构。 二十世纪九十年代,IBM(国际商用机器公司)、Apple(苹果公司)和Motorola(摩托罗拉)公司开发 PowerPC芯片成功,并制造出基于PowerPC的多处理器计算机。PowerPC架构的特点是可伸缩性好、方便灵活。第一代PowerPC采用 0.6微米的生产工艺,晶体管的集成度达到单芯片300万个。Motorola公司将PowerPC内核设计到SOC芯片之中,形成了 Power QUICC(Quad Integrated Communications Controller), Power QUICC II和 Power QUICC III家族的数十种型号的嵌入式通信处理器。 Motorola的基于PowerPC体系结构的嵌入式处理器芯片有MPC505、821、850、860、8240、8245、8260、8560等近几十种产品,其中MPC860是Power QUICC 系列的典型产品,MPC8260是Power QUICC II系列的典型产品,MPC8560是Power QUICC III系列的典型产品。 Power QUICC 系列微处理器一般有三个功能模块组成,嵌入式PowerPC核(EMPCC), 系统接口单元(SIU)以及通信处理器(CPM)模块,这三个模块内部总线都是32位。除此之外Power QUICC中还集成了一个32位的RISC内核。Power PC核主要执行高层代码,而RISC则处理实际通信的低层通信功能,两个处理器内核通过高达8K字节的内部双口RAM相互配合,共同完成MPC854强大的通行控制和处理功能。CPM以RISC控制器为核心构成,除包括一个RISC控制器外,还包括七个串行DMA(SDMA)通道、两个串行通信控制器(SCC)、一个通用串行总线通道(USB)、两个串行管理控制器(SMC)、一个I2C接口和一个串行外围电路(SPI),可以通过灵活的编程方式实现对Ethemet、USB、T1/E1,ATM等的支持以及对UART, HDLC等多种通信协议的支持。 Power QUICCII 完全可以看作是Power QUICC的第二代,在灵活性、扩展能力、集成度等方面提供了更高的性能。Power QUICC 11同样由嵌入式的PowerPC核和通信处理模块CPM两部分集成而来。这种双处理器器的结构由于CPM承接了嵌入式Power PC核的外围接口任务,所以较传统结构更加省电。CPM交替支持三个快速串行通信控制器 (FCC),二个多通道控制器(MCC),四个串行通信控制器(SCC),二个串行管理控制器(SMC),一个串行外围接口电路(SPI)和一个12C接口。嵌入式的Power PC核和通信处理模块(CPM)的融和,以及Power QUICCII的其他功能、性能缩短了技术人员在网络和通信产品方面的开发周期。 同Power QUICCII相比,Power QUICCIII集成度更高、功能更强大、具有更好的性能提升机制。Power QUICCIII中的CPM较Power QUICCII产品200MHz的CPM的运行速度提升了66%,达到333MHz,同时保持了与早期产品的向后兼容性。这使得客户能够最大范围的延续其现有的软件投入、简化未来的系统升级、又极大的节省开发周期。Power QUICCIII通过微代码具有的可扩展性和增加客户定制功能的特性,能够使客户针对不同应用领域开发出各具特色的产品。这种从Power QUICC II开始就有的微代码复用功能,已经成为简化和降低升级成本的主要设计考虑。 PowerPC一般应用在服务器或运算能力强大的专用计算机上,以及游戏机上。 |
|
|
|
|
|
|
|
只有小组成员才能发言,加入小组>>
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-23 23:07 , Processed in 0.762442 second(s), Total 81, Slave 61 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号