超级电容电池的缺点和它的优点一样明显。由于超级电池过快的放电速度和过低的内阻,如果设计不好的话,本身就蕴含着“能量突然大爆发”所隐藏的风险。超级电容放电可以非常快,最大输出功率可达24KW/Kg,一个50Kg的超级电容电池,最大输出功率1200KW,一脚电门踩下去,车能飞起来。
自放电速度比电池快得多,通俗的说就是“存不住电”。超级电容始终是由电容组成的,电容是是由两块电极之间夹一层绝缘电介质构成,无论如何两块电极之间都会有电子的流动,这样就会造成储存电量的减少。超级电池充满电之后过一段时间就可能没电了。
不耐高温,超级电池的工作温度是-40-70℃,耐高寒,温度过高会影响工作,甚至损坏电池。 最大的缺点仍然是成本。虽然世界各国都在加快超级电容的研制,但要想超级电容在民用中普及,尚需时日。 我们可以看见,超级电容的缺点是可以克服,目前其技术尚不成熟。可是超级电容的发展速度非常快,在未来几年内就能运用到民用上,那为什么在汽车上仍难觅其踪迹呢? 这则是不少业内人士所关心的问题。这位记者提出的疑问归纳起来有:
1、生产的成本问题; 2、制备工艺工业化的可行性,特别 是氮化工艺的环境影响问题; 3、能量密度离电动汽车的要求还差得太远,如何解决的问题。 就这些问题,介绍一下这方面技术的进展:
一、成本问题用SiO2模板,然后采用CVD工艺用CH4做碳氮源,长出石墨烯材料,再用氢氟酸腐蚀掉模板,得到三维石墨烯块材料的工艺,确实其成本太高工业化生产难以接受。能否采用其它已有的成熟工艺降低成本呢?
这是是有可能的。例如:采用溶胶凝胶法用石墨烯微片低成本地制备石墨烯气凝胶三维块。众多的研究文献已公开了这方面的技术,浙江大学高超教授研究的三 维石墨烯气凝胶制备技术则是这类技术的榜样。发条橙子的文章中也指出:“3D石墨烯泡沫具有很大的比表面积,以及相应带来的良好的三维导电网络,用这样的 集流体会给材料的性能带来很多加成,在这方面中科院金属所成会明院士组有不少工作可以参考。”
但是,采用溶胶凝胶法实现低成本的关键,是如何低成本地制备石墨烯微片。 现广泛采用化学液相机械剥离法制备二维的氧化态石墨烯微片成本高,还存在使用化学材料对环境影响大、需将石墨烯还原处理工艺长导电性下降、二维微片易粘结成团等等问题。一种物理液相机械剥离法制备本征还原态三维石墨烯微片技术,制备成本低,对环境友好,为三维石墨烯电极块用溶胶凝胶法低成本的制备创造了条件。
二、氮化处理对环境的影响问题
若工业化生产中采用实验室中常用的浓硝酸处理氮化工艺,确实环评很困难通过。
在某国家级产业中心工程中,已使用了一种简单、低成本地解决氮氧化物污染的技术。后巴斯夫为获得此技术和其它关键技术收购了此公司至今也已十多年,生产线还在正常生产。若中科院上海硅酸盐所的超级电容器工业化时采用此净化工艺即可解决对环境影响的问题。
三、能量密度问题
能量密度是超级电容器的“死穴”。为提高超级电容器的能量密度,国内外都投入了大量的资金和人力在研究。但是,国内外研究的路线,基本是研究新型电极材料以 提高电极的比容量,或研究于电极表面产生化学反应的复合型电极,中科院上海硅酸盐所的超级电容器公开之前,超级电容器的能量密度问题还没见突破性进展。
通常超级电容器的碳电极的比容量小于250法拉/克,目前已知最高比容量的材料为氧化钌,其比容量为900法拉/克。但氧化钌的价格太贵,工业生产中不可能 应用。黄富强研究员等采用氮化技术将石墨烯电极的比容量提高至855法拉/克,是目前已报导的高比容量材料的最高水平,这是难能可贵的。
众所周知,提高超级电容器的工作电压即可提高电容器的能量密度,因为电容器的储能量与电容器的工作电压的平方成正比。
超级电容器用电解液主要采用水系电解液。水系电解液工作电压一般不超过1V,但与有机电解液相比,水系电解液的导电性较好(如H2SO4溶液可达0.8S/cm),价格较低,而且比较环保。
提高超级电容器的工作电压的研究,国内外都集中于研究新型高电压工作的电解液。采用有机电解液能提高超级电容器的工作电压(2.3-2.7V),可用于3V的离子液体电解液也有报导,但是也因制备成本高,工业化生产也难以接受。
|