让我们透过PSpice软体工具来看一些特殊情况,例如R 1 =R 2 =10kΩ和a v =10V/V。然后,公式(3)得出A=2/(1+1/10)=1.818A/A。然而,PSpice却得出1.909A/A,虽然差别不大,但对于这样简单的电路来说绝对是不能接受的。在图3c中a v →0的情况下甚至出现更大的差异。藉由检查发现,i O =i I,因此A=i O /i I =1A/A,而公式(3)预测A=2a v /(a v +1)=2x0/(0+1)= 0A/A!
图3:获得(a)A ideal;(b)回路增益T; (c)馈通增益a ft的电路。有什么问题?公式(3)的问题在于它试图使II转换器符合图1的电路图,它假设讯号单向传输,即透过放大器正向传输,以及透过回馈网路反向传输,如图中的箭头图形所示。然而,仔细审视II转换器就会发现,回馈网路是双向的,如图3c所示,在将v N =v O /(1+R 2 /R 1 )回馈回运算放大器的反相输入时,网路也将i I前馈到负载,绕开了运算放大器。这时,馈通增益为a ft =1A/A。我们该如何考虑这种双向性?电路很简单,我们可以直接分析它(参考文后的附录)。确切的结果是:
这与公式(3)不完全相同。但是,我们可以轻松地将公式(4)重新表达为:
其中最后一项确实考虑了讯号馈通。在我们的范例中(R 1 =R 2 =10kΩ及a v =10V/V),公式(5)得出A=1.818+1/11=1.909A/A,本来就应该这样。透过PSpice查看各种增益还是很直观的。图4a的电路采用了一个直流增益为10V/V、增益频宽积GBP为10MHz的运算放大器(没错,这里特意采用低于标准的运算放大器,以更充分显示由馈通产生的影响)。从图4b的迹线(trace)可以看出,只要a v (迹线#1)足够高,馈通分量(迹线#3)可以忽略不计。然而,a v随着频率滚降,馈通变得越来越相关,最终占据主导地位。因此在高频下,迹线#4与迹线#3汇合,使得A→a ft。
图4:(a)用于模拟图2电流放大器的PSpice电路图;(b)相对应的迹线:#1是开回路增益a v,#2和#3是公式(5)右边的第一和第二分量,#4是整体闭回路增益A。渐近增益模型讨论了简单的II转换器,我们再用图5的电路图对图1的简单电路图作一个概括,称之为渐近增益模型(asymptotic gain model),该电路给出:
其中:
图5:考虑误差放大器的馈通并概括图1的电路图。我们应该担心馈通吗?将馈通项a ft s I视为一种杂讯形式是有益的,我们将之反映到误差放大器的输入,即(a ft s I )/a ε。图6可以很容易证明这一点。
显然只要|a ft |<<|a ε |,馈通可能就不会是问题;但是,a ε随着频率滚降(rolls off),a ft变得越来越相关,并最终占据主导。
图6:将馈通建模为一种输入杂讯形式。我们是否应关心馈通,取决于实际应用。
图7:使用GBP=1MHz和r o =100Ω的运算放大器来实现积分器。在积分器(integrator)电路中,馈通可能是一个问题。图7使用了一个1MHz运算放大器,其输出阻抗r o=100Ω,以接近理想的传递函数:
其中f 0是积分器的单位增益频率:
其中:
消除v O,整理得到:
图10:此电路可以得到(a)电流增益A=i O /i I;(b)输入;(c)图2中电流放大器的输出电阻R i和R o。我们也一并找出闭回路终端电阻R i和R o。为了找到输入源i I所见的电阻R i,利用如图10b中的测试电流i,得到v:
求解比值R i =v/i,得到:
为了找到负载LD所见的输出电阻R o,施加一个测试电压v,如图10c所示,可以得到i:
其中:
求解比值R o =v/i,得到:
小测验有四个学生(A、B、C和X)正在讨论图11的VI转换器,该转换器使用的运算放大器具有无限大输入电阻、零输出电阻,以及很大的开回路增益a v。具体而言,他们试图找出负载LD所见的输出电阻R o。
图11:(a)VI转换器的理想值i O =(1/R)V i;以及(b)负载所见的电阻R o。A:很明显,LD往上看到运算放大器的输出电阻,假设为零;向下只看到R,因为没有电流流入反相输入端。因此,R o =0+R=R。X:没错!B:错!透过回馈作用,运算放大器在R和源V i之间建立虚拟短路,这被认为是理想的,因此R o=0+0=0。X:正确!C:我听说R o应该比较大...X:这就是我一直说的:R o →∞,至少理想情况下是这样。问题:你觉得上面哪一个学生是对的?