揭秘肖特基二极管在电源管理中的应用
任何非同步直流/直流转换器都需要一个所谓的肖特基二极管。为了优化方案的整体效率,通常倾向于选择低正向电压的肖特基二极管。很多设计都采用一个转换器设计(网络)工具推荐的肖特基二极管。这并非总是肖特基二极管的最优选择。更何况,如果设计工具不考虑热性能和漏电流之间的动态变化,则极有可能发生实际性能有别于设计工具的分析或模拟出的结果。立深鑫将带您一起探讨一些在选择正确的肖特基二极管时应仔细考虑的典型参数,以及如何应用这些参数来快速确定选型的正确与否。
1、检查损耗
图1给出了非同步直流/直流降压转换器的基本框图。D1是所需的肖特基二极管。左侧是开关S1闭合时(时间为T1)的电流情况,右侧是开关S1打开时(时间为T2)的电流情况。
当时间为T2时,输出电流(Iout)流经D1。所产生的损耗与D1的正向电压(Vfw)和输出电流直接相关。PT2等于Iout*Vfw。显然,我们希望尽可能降低以控制损耗,减少发热。
T1期间,D1处于阻断状态。唯一的电流是反向电流。此电流相对较弱,并且主要由阻断电压或输入电压Vin决定。T1阶段二极管产生的功耗,称为PT1,大致等于Ir*Vin。
对于任何肖特基二极管,在设计时都存在一个取舍。即此设备要么针对低Vf进行优化,要么针对低Ir进行优化。因此,如果选择低Vf,则Ir就较高,反之亦然。在实际应用设计时,重要的是不仅要观察Vf或Ir的值,还要分析它们在实际操作中会产生什么结果。Vf和Ir都会随温度变化而改变。当温度升高,Vf会降低,在肖特基二极管升温的同时降低了热扩散。但非常不幸的是,Ir会随着肖特基二极管温度升高而增加。所以,肖特基二极管温度越高,漏电流就越多,内部功耗就越多,这样就使得肖特基二极管温度更高,从而再次增加漏电流,如此循环。
如果坚持采用基本的非同步直流/直流转换器的设计案例,不妨做一个基本分析以确定肖特基二极管内部功耗和由此导致的设备温度。直流/直流转换器的运行占空比与电压输入输出的比值直接相关(DC=Vout/Vin)。电压输入和输出的比值越低,T2的时间就越长,PT2对整个肖特基二极管的功耗影响也就越大。反之亦然,T1越长(或和的比值越高),PT2对总功耗的影响就越小,PT1的作用就越大。
以两个直流/直流转换器为例,两个都是24V输入电压,但其中一个是18V输出电压而另一个是5V。使用Vin和Vout的比值计算得到占空比,并且使用数据表中的Vf和Ir值计算出二极管内总功率的损失。然后根据总功耗计算出由此导致的肖特基二极管温度,并查找在此温度下的Vf和Ir实际数值。最后根据新的肖特基二极管温度重新算出内部功耗。这个迭代过程可以重复多次以提高精确度,但如果只想大致表明Vf和Ir的不同取舍所产生的影响,单次迭代就足够了。
设备温度可使用描述热性质的基本热方程计算,和用于描述电压,电流,电阻的计算并无不同。一旦知道了设备的内部功耗(Ptot),就可以用它乘以结点到环境的热阻(Rtja),计算出设备结点处的温度变化。把它加上环境温度,就得到了该设备在此功耗和环境温度下的最终结点温度。
揭秘肖特基二极管在电源管理中的应用
0
|
|
|
|