解决这矛盾需要一点创意工程。为加快速度,我们首先将该器件的输出数从一增加至四,从而提高了吞吐量,而不需要改变现有的(经证实的)低噪声放大器设计。我们还修改了CCD的水平寄存器的电荷容量,以支持最大的水平时钟速度的增加。这还令器件能低速运行,但当器件工作于视频模式时提供额外的带宽。
最后,我们稍稍调节了像素数,将该新器件优化用于2 x 2和3 x 3 binning,不仅提高了成像的灵敏度(减少X射线曝光),也减少数据发送量(进一步提高帧速率)用于视频模式。
总之,结果是,图像传感器在读出选择方面非常灵活。对于视频成像,像素可以binned,传感器以最快速度运行,以每秒10帧产生100万像素的图像流。但是,当捕获最终图像时,可以关闭binning,输出速度降低,从而以低噪声捕获全分辨率图像,保留应用所需的重要细节。
也就是说,一个图像传感器优化用于两种不同的用例–就像医生针对不同病人有不同的医嘱。