完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
RealSense SDK 2.0的“RealSense Viewer”程序可以加载预先录制的数据文件,这样您就可以使用该软件进行练习,而无需连接相机。
您可以从以下链接下载示例数据。 主机上的librealsense / sample-data.md·IntelRealSense / librealsense·GitHub 使用D435不需要OpenCV来检测Z深度。 如果你已经使用它编写了一个程序,那么你可以继续这样做是可以理解的。 开发人员UnaNancyOwen创建了一个使用OpenCV的深度示例。 RealSense2Sample / sample / Depth at master·UnaNancyOwen / RealSense2Sample·GitHub 对于使用OpenCV的RealSense 400系列相机,还有一些对象检测示例。 主机上的librealsense / wrappers / opencv / dnn·IntelRealSense / librealsense·GitHub GitHub - twMr7 / rscvdnn:使用RealSense相机进行OpenCV DNN对象检测的测试程序 关于最大距离,设置'MaxZ'深度钳可能对您有用。 从C ++和python代码设置深度钳位最小值/最大值·问题#2199·IntelRealSense / librealsense·GitHub 以上来自于谷歌翻译 以下为原文 The RealSense SDK 2.0's 'RealSense Viewer' program can load in pre-recorded data files so that you can practice with the software without having to have a camera attached. You can download the sample data from the link below. librealsense/sample-data.md at master · IntelRealSense/librealsense · GitHub OpenCV is not required to detect Z-depth with the D435. If you have already written a program using it though then it is understandable that you would wish to continue with that. The developer UnaNancyOwen has created a depth sample that uses OpenCV. RealSense2Sample/sample/Depth at master · UnaNancyOwen/RealSense2Sample · GitHub There are also a couple of object detection examples for the RealSense 400 Series cameras that use OpenCV. librealsense/wrappers/opencv/dnn at master · IntelRealSense/librealsense · GitHub GitHub - twMr7/rscvdnn: Test program for OpenCV DNN object detection with RealSense camera In regard to a maximum distance, setting up a 'MaxZ' depth clamp may work for you. Set depth clamp min/max from C++ and python code · Issue #2199 · IntelRealSense/librealsense · GitHub |
|
|
|
nywerwer 发表于 2018-10-22 14:54 大家好,非常感谢你们所有的资源。 我想改写一下,所以我的第一个问题更清晰。 我正试图检测进入我相机视图的黑豌豆并捕获它的实时x,y,z值。 我不需要以任何方式对其进行分类。 所以你说的是我可以100%在realsense sdk中完成我的程序吗? 以上来自于谷歌翻译 以下为原文 Hi thank you so much for all the resources. I would like to rephrase so my first question is clearer. I'm trying to detect a black pea that enter my camera's view and capture it's real time x,y,z values. I don't need to classify it in any way. So what you're saying is that I can do my program 100% in the realsense sdk? |
|
|
|
您当然可以使用RealSense SDK进行深度感应部分。 检测和识别对象通常需要第三方软件,如OpenCV。 以下是使用点云在OpenCV中跟踪面部动作的YouTube视频示例。 使用PCL,OpenCV和Kinect进行面部点云跟踪 - YouTube 我可以想到用RealSense SDK单独检测蚊子的唯一方法是编写一个应用程序,以检测蚊子总是显示的红外图像中的特定颜色,并触发“检测”事件,如果该颜色是 在红外图像中识别。 由于蚊子是一种在其皮肤下有血液的生物,因此红色可能最佳。 一旦蚊子喝了血并将其储存在自身内,就会更容易检测到。 在较旧型号的RealSense相机中,一种称为脉冲估计的技术被证明可以根据红外图像上皮肤下的血液颜色来估计心率。 存档 - 采用英特尔®实感™技术的脉冲检测| Intel®软件 以上来自于谷歌翻译 以下为原文 You could certainly do the depth sensing part with the RealSense SDK only. Detection and recognition of objects would usually require third-party software such as OpenCV though. Here's an example YouTube video of a face's motion being tracked in OpenCV using a point cloud. Face Point Cloud Tracking using PCL, OpenCV, and Kinect - YouTube The only way I can think of to detect the mosquito with the RealSense SDK alone would be to program an application to detect a particular color in the IR image that the mosquito always shows up as, and trigger a 'detect' event if that color is recognized in the IR image. As a mosquito is a living creature with blood under its skin, red may show up best. It would be even easier to detect once the mosquito has drank blood and stored it inside itself. In the older models of RealSense camera, a technique called Pulse Estimation was demonstrated to estimate heart rate based on the color of blood under the skin on the IR image. Archived - Pulse Detection with Intel® RealSense™ Technology | Intel® Software |
|
|
|
nywerwer 发表于 2018-10-22 15:27 棒极了。 我无法感谢你们所有的帮助。 我一定会更详细地浏览一切。 我将首先开始在opencv中检测一个小对象并获取深度信息并从那里开始工作。 再次感谢你 以上来自于谷歌翻译 以下为原文 Thats amazing. I can't thank you enough for all the help. I will definitely look through everything in more detail. I'll get started on detecting a small object in opencv first and getting the depth information and work my way up from there. Thank you so much once again |
|
|
|
非常欢迎你! 如有需要,请随时回到论坛,并提出进一步的问题。 祝你好运! 以上来自于谷歌翻译 以下为原文 You're very welcome! Please feel free to come back here to the forum with further questions whenever you need to. Good luck! |
|
|
|
只有小组成员才能发言,加入小组>>
516浏览 0评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-22 22:42 , Processed in 0.692379 second(s), Total 87, Slave 69 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号